
CABSL –
C-based Agent Behavior Specification Language

Thomas Röfer1,2

1 Deutsches Forschungszentrum für Künstliche Intelligenz, Cyber-Physical Systems
Enrique-Schmidt-Str. 5, 28359 Bremen, Germany

2 Universität Bremen, Fachbereich 3 – Mathematik und Informatik,
Postfach 330 440, 28334 Bremen, Germany

E-Mail: thomas.roefer@dfki.de

Abstract. This paper describes the C-based Agent Behavior Specifica-
tion Language (CABSL) that is available as open source [8]. It allows
specifying the behavior of a robot or a software agent in C++11. Se-
mantically, it follows the ideas of the Extensible Agent Behavior Speci-
fication Language (XABSL) developed by Lötzsch et al. [6], i. e. robot
behavior is described as a hierarchy of finite state machines. However,
its integration into a C++ program requires significantly less program-
ming overhead than when using XABSL. CABSL has been part of all
B-Human code releases since 2013 [9], but it is now also available as a
standalone release that works without the B-Human base system.

1 Introduction

Modeling the behavior of a software agent or a robot is an important part of
building autonomous systems. In the domain of RoboCup, real-time require-
ments and limited computational resources often prevent the use of planning-
based approaches. Instead, the behavior is explicitly specified. In this context,
hierarchical finite state machines have been proven to be a successful concept.
They come in different forms, e. g. as Nilsson’s Teleo-Reactive programs [7] or
as Hierarchical Task Networks [3], although the latter are typically used to plan
ahead. The C-based Agent Behavior Specification Language (CABSL) presented
in this paper allows following the approach of modeling behavior as hierarchical
finite state machines directly in C++, i. e. the language in which many robots
are programmed anyway. As a result, CABSL avoids the programming overhead
that usually comes from combining different programming languages.

The paper is organized as follows: First, Section 2 discusses behavior mod-
eling languages and in particular CABSL’s predecessor XABSL. Then, the lan-
guage CABSL is presented in Section 3. In Section 4, CABSL is compared to
XABSL. Section 5 discusses the impact CABSL had so far. Finally, the paper
concludes in Section 6.

2 XABSL

Many ways have been developed to specify the behavior of a software agent or
a robot. Risler [12] gives a good overview of the different approaches in his PhD
thesis. The approach that is most similar to the system presented in this paper
is the Extensible Agent Behavior Specification Language (XABSL) developed by
Lötzsch et al. [6]. It initially allowed specifying behavior using XML and used
XML Schema to compile the source code to an intermediate representation that
was interpreted by the XABSL Engine at runtime. Bastian Schmitz later devel-
oped a compiler in Ruby that understands a more C-like language and creates
the same intermediate code [10]. It was later integrated into the official XABSL
release. Risler later also integrated multi-agent features into the language [12].
The XABSL release [13] comes with an example behavior for the ASCII Soccer
simulator by Balch [1], which was also used as an example for the CABSL release
described in this paper (cf. Fig. 1).

3 Approach

A robot control program is executed in cycles. In each cycle, the agent acquires
new data from the environment, e. g. through sensors, runs its behavior, and
then executes the commands the behavior has computed, i. e. the agent acts.
This means that a robot control program is a big loop, but the behavior is just a
mapping from the state of the world to actions that also considers what decisions
it has made before.

3.1 Options

CABSL describes the behavior of an agent as a hierarchy of finite state machines,
the so-called options. Each option consists of a number of states. Each state can
define transitions to other states within the same option as well as the actions
that will be executed if the option is in that state. One of the possible actions
is to call another option, which lets all options form a directed acyclic graph
(cf. Fig. 2a). In each execution cycle, a subset of all options is executed, i. e.
the options that are reachable from the root option through the actions of their
current states. This current set of options is called the activation graph (actually,
it is a tree). Starting from the root option, each option switches its current state
if necessary and then it executes the actions listed in the state that is then
active. The actions can set output values or they can call other options, which
again might switch their current state followed by the execution of actions. Per
execution cycle, each option switches its current state at most once.

3.2 States

Options can have a number of states, e. g. get to ball, pass, and dribble in the
example (cf. Fig. 1a, 2b). One of them is the initial state, in which the option

option(midfielder) {
initial state(get to ball) {
transition {
if (ball distance <= 3)
if (westmost teammate x

> ball x + 2)
goto dribble;

else
goto pass;

}
action {

go to(ball x, ball y);
}

}

state(pass) {
transition {
if (ball distance > 3)
goto get to ball;

}
action {
pass();

}
}

state(dribble) {
transition {
if (ball distance > 3)
goto get to ball;

}
action {
dribble();

}
}

}

(a) Option midfielder (b) ASCII Soccer with CABSL activation graphs

Fig. 1: Behavior originally developed by Lötzsch et al. [6] for the ASCII Soccer
simulator by Balch [1] ported to CABSL

starts when it is called for the first time and to which it falls back if it is executed
again, but was not executed in the previous cycle, because no other option called
it. There are two other kinds of special states, namely target states and aborted
states. They are intended to signify to the calling option that the current option
has either succeeded or failed. The calling option can determine, whether the last
sub-option it called has reached one of these states. It is up to the programmer
to define what succeeding or failing actually mean, i. e. under which conditions
these states are reached.

3.3 Transitions

States can have transitions to other states, e. g. get to ball has transitions to
pass and dribble (cf. Fig. 1a). They are basically decision trees, in which each
leaf contains a goto-statement to another state. If none of these leafs is reached,
the option stays in its current state.

defender

go
to dribble

get
behind
ball

set
action

go
dir

midfielder

pass

play
soccer

striker

(a) The option graph

option 'midfielder'

get
to

ball

dribble pass

go
to

dribble pass

(b) The optionmidfielder (cf. Fig. 1a)

Fig. 2: The example that is provided with the CABSL release

An option can have a common transition. Its decision tree is executed before
the decision tree in the current state. The decision tree of the current state
functions as the else-branch of the decision tree in the common transition.
If the common transition already results in a change of the current state, the
transitions defined in the states are not checked anymore. In general, common
transitions should be used sparsely, because they conflict with the general idea
that each state has its own conditions under which the state is left.

3.4 Actions

States have actions that are executed if the option is in that state. They set out-
put symbols and/or call other options, e. g. execute go to in the state get to ball
(cf. Fig. 1a, 2b). Although any C++ statements can be used in an action block,
it is best to avoid control statements, i. e. branching and loops. Branching is bet-
ter handled by state transitions and loops should not be used in the behavior,
but rather in functions that are executed before or after the behavior or that are
called from within the behavior. It is allowed to call more than one sub-option
from a single state, but only the last one called can be checked for having reached
a target state or an aborted state.

3.5 Symbols

All options have access to the member variables of the C++ class in the body
of which they are included, e. g. ball distance, westmost teammate x, ball x, and
ball y (cf. Fig. 1a). These member variables function as input symbols and output

symbols. Input symbols are usually used in the conditions for state transitions.
Output symbols are set in actions.

There are four predefined symbols that can, e. g., be used in the conditions
for state transitions:

option time is the time the option was continuously active, i. e. the time since
the first execution cycle it became active without being inactive afterwards.
The unit of the time depends on the time values passed to the behavior
engine. For instance, the time measure used in the ASCII Soccer behavior is
just the number of execution cycles. The option times are shown behind the
option names in Fig. 1b.

state time is the time the option was continuously in the same state, i. e. the
time since the first execution cycle it switched to that state without switch-
ing to another one afterwards. The state time is also reset when the op-
tion becomes inactive, i. e. the state time can never be bigger than the
option time. Again, the state times are shown behind the state names in
Fig. 1b.

action done is true if the last sub-option executed in the previous cycle was in
a target state.

action aborted is true if the last sub-option executed in the previous cycle was
in an aborted state.

3.6 Parameters

Options can have parameters. From the perspective of the option, they are not
different from input symbols. As in C++, parameters hide member variables of
the surrounding class with the same name. When calling an option, its actual
parameters are passed to it as they would be in C++.

However, parameters must be streamable into a standard iostream as text,
because they are added to a data structure that allows visualizing the activa-
tion graph. Therefore, any parameter of a non-primitive datatype P must over-
load std::ostream& operator(std::ostream&, P). The visualization of op-
tions with parameters can be seen in Fig. 1b for the options go to(int x, int

y), go dir(Action next action), and set action(Action next action).
Action is an enumeration type the values of which (mainly cardinal directions)
can only be shown literally in the activation graph, because a specialized stream-
ing operator was defined. As can be seen in the following section, the syntax of
parameter definitions is different from the syntax C++ normally uses, because
the C++ preprocessor must be able to extract them.

3.7 Grammar

In the following grammar, <C-ident> is a normal C++ identifier. <C-expr> is
a normal C++ expression that can be used as default value for a parameter.
<C-ifelse> is a decision tree. It should contain goto statements to other states
(names of states are C++-labels). <C-statements> is a sequence of arbitrary
C++ statements.

<cabsl> = { <option> }
<option> = option ’(’ <C−ident> { ’,’ <param−decl> } { ’,’ <param−dflt> } ’)’

’{’
[common transition <transition>]
{ <other−state> } initial state <state> { <other−state> }
’}’

<param−decl> = ’(’ <type> ’)’ ’ ’ <C−ident>
<param−dflt> = ’(’ <type> ’)’ ’(’ <C−expr> ’)’ ’ ’ <C−ident>
<other−state> = (state | target state | aborted state) <state>

<state> = ’(’ C−ident ’)’
’{’
[transition <transition>]
[action <action>]
’}’

<transition> = ’{’ <C−ifelse> ’}’
<action> = ’{’ <C−statements> ’}’

3.8 Code Generation

Technically, the C++ preprocessor translates each option to a member function
(two for options with parameters) and a member variable of the surrounding
class. The member variable stores the context of the option, e. g. which is its
current state. The context is passed as a hidden parameter to each option with
the help of a temporary wrapper object. Each state is translated to an if-
statement that checks whether the state is the current one and that contains
the transitions and actions. CABSL uses C++ labels as well as line numbers
(LINE) to identify states. Therefore it is not allowed to write more than one
state per line. Each state defines an unreachable goto statement to the label
initial state, which is defined by the initial state. Thereby, the C++ compiler
will ensure that there is exactly one initial state if the option has at least one
state. The compiler can also warn if there are unreachable states.

As all options are defined inside the same class body, where C++ supports
total visibility, every option can call every other option and the sequence in
which the options are defined is not important. In addition, each option has
access to all member variables defined in the surrounding class. Each option sets
a marker in its context whether its current state is a normal, target, or aborted
state. It also preserves that marker of the last sub-option it called for the next
execution cycle so that the symbols action done and action aborted can use
it. The context also stores when the option was activated (again) and when the
current state was entered to support the symbols option time and state time.

4 Comparison to XABSL

There are several advantages of CABSL over XABSL. The first is the very small
coding overhead when using CABSL. In XABSL, all input symbols and output
symbols need to be registered with the engine both on the C++ side and on
the XABSL side. In CABSL, all members of the surrounding class can directly
be used. XABSL only supports the datatypes boolean, double, and enumeration.

In contrast, CABSL supports any datatype that can be used in C++. CABSL
can also perform any kind of C++ computation, while XABSL requires moving
computations that exceed its expressiveness to external C++ functions that
again have to be registered with the engine. As CABSL is just C++, IDEs
can offer auto-completion of identifiers, check the code while typing, and their
integrated debuggers can be used. In addition, no custom build step is required.

However, there are also a number of drawbacks of using CABSL instead of
XABSL. While XABSL has a fixed syntax and the XABSL compiler makes sure
that the programmer follows it, CABSL is just a set of C++ macros that can
also be used in ways that violate the intended grammar, but are still accepted
by the C++ compiler. All further drawbacks listed here were never relevant for
the author’s team, because they concern features that were never used. CABSL
is limited to C++, while XABSL also provides a Java implementation of the
engine. XABSL can generate an extensive documentation in HTML. However,
this feature was more useful when XABSL sources still used the XML format,
which made them hard to read. For use in publications, CABSL comes with a
script that can generate graphs as shown in Fig. 2. The XABSL engine supports
replacing the behavior on the fly, i. e. it is possible to upload a new behavior
specification to a robot while the code is running. This requires some external
infrastructure for sending the code to the robot, but is in general easy to im-
plement. CABSL does not offer a similar feature, but if desired, it would be
possible to compile the CABSL behavior into a shared library, which could then
be exchanged at runtime. In fact, de Haas et al. [4] follow a similar approach for
their behavior specification language that was also compiled to native code.

5 Impact

The team B-Human has used CABSL since 2013 and has become world cham-
pion twice with behaviors written in it [9]. Some teams who base their robot
control software on B-Human’s yearly code releases also use it, e. g. [11,14]. For
instance, the Nao Devils Dortmund state in their team report [5]: “Since 2013,
we use CABSL which [. . .] implements XABSL as C++ macros allowing for
easy access to all data structures. . . ”. The Bembelbots Frankfurt, who do not
use B-Human’s base system, write in their report [2]: “. . . later replaced by the
commonly used XABSL language. Several drawbacks let us move further to the
C-implementation published by B-Human [. . .]. Old behavior models could eas-
ily be reimplemented. . . ”. The standalone release of CABSL is exactly meant
for such users, who just want to specify a robot behavior, but who do not want
to use the whole B-Human system.

6 Conclusion

The paper presented the behavior specification language CABSL. It is an easy
way to specify robot behavior in the form of hierarchical finite state machines
in C++. It has already been used by several other RoboCup teams. It is now

available as an open source standalone release that allows using its most recent
version without using the B-Human framework [8].

References

1. Balch, T.: The ASCII robot soccer homepage (1995), https://www.cs.cmu.edu/

~trb/soccer

2. Brast, J.C., Ditzel, S., Fürtig, A., Hess, T., Peterssen, L., Rinfreschi, K.,
Siegl, J.M., Steiner, S., Weiglhofer, F., Wörner, P.: Team report 2016
(2016), http://www.jrl.cs.uni-frankfurt.de/web/wp-content/uploads/2016/
12/TeamReport_Bembelbots_2016.pdf

3. Georgievski, I., Aiello, M.: An overview of hierarchical task network planning.
CoRR abs/1403.7426 (2014), http://arxiv.org/abs/1403.7426

4. de Haas, T.J., Laue, T., Röfer, T.: A scripting-based approach to robot behav-
ior engineering using hierarchical generators. In: Proceedings of the 2012 IEEE
International Conference on Robotics and Automation (ICRA). IEEE (2012)

5. Hofmann, M., Schwarz, I., Urbann, O., Rensen, F., Larisch, A., Moos, A., Hem-
mers, J.: Nao Devils Dortmund team report 2016. Tech. rep., Technische Uni-
versität Dortmund (2016), https://github.com/NaoDevils/CodeRelease2016/

blob/master/TeamReportNaoDevils2016.pdf

6. Lötzsch, M., Risler, M., Jüngel, M.: XABSL – a pragmatic approach to behavior
engineering. In: Proceedings of IEEE/RSJ International Conference of Intelligent
Robots and Systems (IROS). pp. 5124–5129. Beijing, China (2006)

7. Nilsson, N.: Teleo-reactive programs for agent control. Journal of Artificial Intelli-
gence Research 1, 139–158 (1994)

8. Röfer, T.: CABSL – C-based agent behavior specification language (2017), https:
//github.com/bhuman/CABSL

9. Röfer, T., Laue, T., Müller, J., Bartsch, M., Batram, M.J., Böckmann, A., Böschen,
M., Kroker, M., Maaß, F., Münder, T., Steinbeck, M., Stolpmann, A., Taddiken, S.,
Tsogias, A., Wenk, F.: B-Human team report and code release 2013 (2013), https:
//www.b-human.de/downloads/publications/2013/CodeRelease2013.pdf

10. Röfer, T., Laue, T., Weber, M., Burkhard, H.D., Jüngel, M., Göhring, D., Hoff-
mann, J., Altmeyer, B., Krause, T., Spranger, M., von Stryk, O., Brunn, R.,
Dassler, M., Kunz, M., Oberlies, T., Risler, M., Schwiegelshohn, U., Hebbel,
M., Nisticó, W., Czarnetzki, S., Kerkhof, T., Meyer, M., Rohde, C., Schmitz,
B., Wachter, M., Wegner, T., Zarges, C.: Germanteam robocup 2005 (2005),
http://www.informatik.uni-bremen.de/kogrob/papers/GT2005.pdf

11. Riccio, F.: Programming NAO-robots (2014), http://www.dis.uniroma1.it/

~nardi/Didattica/CAI/matdid/RobotProgrammingNao.pdf, slides from a lecture
at Sapienza Università di Roma

12. Risler, M.: Behavior Control for Single and Multiple Autonomous Agents Based on
Hierarchical Finite State Machines. Fortschritt-berichte vdi, Technische Universität
Darmstadt (May 15 2009), http://tuprints.ulb.tu-darmstadt.de/2046

13. Risler, M., Martin Lötzsch, Matthias Jüngel, T.K.B.S.: XABSL – the extensible
agent behavior specification language (2009), http://www.xabsl.de

14. Sterner, N.A.: Behavior programming of the goal keeper using CABSL
(2014), https://www1.ethz.ch/robocup/ProjectReports/2014_Nico_Behavior_
Programming_of_the_Goalkeeper_Using_CABSL, semester thesis, nomadZ project
reports, ETH Zürich

https://www.cs.cmu.edu/~trb/soccer
http://www.jrl.cs.uni-frankfurt.de/web/wp-content/uploads/2016/12/TeamReport_Bembelbots_2016.pdf
http://arxiv.org/abs/1403.7426
https://github.com/NaoDevils/CodeRelease2016/blob/master/TeamReportNaoDevils2016.pdf
https://github.com/bhuman/CABSL
https://www.b-human.de/downloads/publications/2013/CodeRelease2013.pdf
http://www.informatik.uni-bremen.de/kogrob/papers/GT2005.pdf
http://www.dis.uniroma1.it/~nardi/Didattica/CAI/matdid/RobotProgrammingNao.pdf
http://tuprints.ulb.tu-darmstadt.de/2046
http://www.xabsl.de
https://www1.ethz.ch/robocup/ProjectReports/2014_Nico_Behavior_Programming_of_the_Goalkeeper_Using_CABSL

