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Abstract. Knowing the positions of the other players on a football pitch
is a crucial aspect for playing successfully. However, knowing not only
the position but also the orientation of another player provides certain
tactical advantages. In this paper, we present a vision-based approach
for determining the orientation of humanoid NAO robots over short and
medium distances. It is based on the idea of analyzing the alignment of
other robots’ foot sides. In a series of experiments, we demonstrate that
the approach is able to perform robust and precise orientation detection
in different scenarios.

1 Introduction

Without knowing the positions of other robots, at least in the immediate vicinity,
playing soccer in a reasonable manner is barely possible, as collisions and losing
possession of the ball will occur frequently. This is why almost all participants
across all RoboCup leagues employ some sort of obstacle or robot detection
to perform path planning and to support decision making. However, on higher
tactical levels, the orientation of opponent robots becomes more and more im-
portant. Similar to humans, humanoid robots cannot move in all directions with
the same speed. For most robots, moving forward is predominant, requiring an
initial rotational movement towards the walk target. Thus, the time to reach a
certain position on the field, for instance to intercept a pass, always depends on
the initial orientation. Furthermore, humanoid soccer robots have a limited field
of view and cannot perceive what is happening behind them, often not even by
turning the head. These limitations in motion and perception imply that consid-
ering the opponent’s orientation in decision making, for instance when choosing
the dribble direction or the next pass target, provides a tactical advantage as it
contributes to reducing the risk of interference by opponents.

In this paper, we present an approach to solve the first step towards such kind
of tactics: detecting the orientation of robots in sensor data. As we use the NAO
robot as platform, the approach is vision-based, processing data from the two
NAO cameras. Furthermore, as we base our work on the B-Human framework
[9], several already existing preprocessing steps are facilitated, including basic
robot detection. Our new approach uses the alignment of robot feet to compute



orientations, as this feature turns out to be quite robust, in contrast to a robot’s
upper body, which might have a complex appearance due to moving arms and
a jersey of almost arbitrary style. The major benefits of our approach are its
ability to determine orientations even over distances of more than two meters,
which is necessary as robots might walk quite fast, as well as its computational
efficiency, which is important as the available computing time has always to be
shared with many other components.

The remainder of this paper is organized as follows: First, Section 2 discusses
related approaches to determine the position and orientation of soccer robots.
Afterwards, necessary preliminary works for the orientation detection are pre-
sented in Section 3, followed by a description of our approach in Section 4. An
evalution of the accuracy and the performance of our approach is presented in
Section 5. Finally, the paper concludes in Section 6.

2 Related Work

Early works in the RoboCup Standard Platform did not only ignore any orien-
tation of other robots but also the robot appearance at all. Using AIBO robots,
[4] as well as [6] only considered gaps in the perceived field’s surface as areas
that should be avoided. Algorithms for explicitly detecting other NAO robots
have been presented by [8] and [2]. The latter approach also included the de-
termination of the team the detected robot is playing for. This information was
used to build a team-wide model of the opponents, as described in [5].

The RoboCup robot league that currently has the most advanced tactical
plays is probably the Small Size League. In this league, orientation information
is important as the robots’ kick devices are always at the front part. However,
through having external cameras over the field and standardized colored patterns
(that encode position, identity, and orientation) on top of all robots, the detection
process is quite simple and is solved by the standardized vision system [12].

A general approach to determine the orientation of objects is template match-
ing. In a preprocessing step, a specific amount of images, containing objects with
different orientations, must be analyzed for their features (like color gradients
and normals) and saved as templates. To determine the orientation of an input
image, its features must be compared with the templates. The orientation of the
most similar template will be returned. However, template matching approaches
require a lot of computing time. For instance, the software Linemod [3] has an
average execution time of 119 ms on a 2,3 Ghz Intel CPU. There is also a related
approach which was tested in the Sony Four-Legged League using SIFT descrip-
tors. The tested implementation has an average execution time of 300 ms on a
576 MHz CPU [7]. In [11], a decision tree learning approach that considered the
alignment of the distinctive AIBO robot jerseys patches was described.

One recent work in the RoboCup Standard Platform League is based on a
deep neural network which gets the brightness values of pixels of a robot region
as input and returns a two dimensional direction vector [10]. The average error is
declared with approximately 8◦ and the execution time is approximately 0.23 ms
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Fig. 1. (a) A color classified image and (b) a contrast-normalized Sobel image from
the upper camera of a NAO.

per robot region. However, it is not clear if this approach also works for moving
robots and over which distances the result can be reproduced.

3 Preliminary Works

The approach presented in this paper does not work on plain images but on
already preprocessed data. In addition, the basic task of detecting a robot in an
image is also carried out by a different component.

In the B-Human framework [9], there are two different preprocessed images
that are created from the original camera images. Both can be used for orien-
tation detection. The first one is a color classified image, in which pixels are
just classified as black, white, green, or no color (see Fig. 1a). As a first step,
classifying a pixel’s color is done by applying a threshold to its saturation to
classify this pixel as whether colored or non-colored. For the distinction of black
and white, there is just another threshold applied to the luminance. Finally,
for green, there is a range defined regarding the hue. Due to recent changes in
the setup of the Standard Platform League, no more color classes are needed.
Robot jersey colors can be chosen arbitrarily and are thus not part of the color
classification process.

The second image is the contrast-normalized Sobel image (see Fig. 1b). This is
an image in which the pixels represent vectors whose lengths indicate how heavy
the pixels’ colors change and whose directions show the changing direction. In
general, the contrast-normalized Sobel image offers a higher quality in finding
silhouettes than the color classified image.

The B-Human framework already contains different implementations for
robot detection. The one that has been used for this paper subsamples the color
classified image along vertical lines and merges line parts that are not green
within union find data structures. Field lines and balls are filtered out by size
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Fig. 2. Illustration of the major line and minor line definition on a (a) forward-facing
and a (b) backward-facing robot.

and shape so that only potential robot regions remain. These regions are used
for the orientation determination described in this paper. Please note that our
approach is in no way limited to this particular player perception software.

4 The Orientation Detection Approach

The approach consists of two steps which both analyze the region around a previ-
ously recognized robot’s feet. First, we search for two lines – the so-called major
line and minor line – in this region. These two lines already allow calculating
an orientation in the range of [−90◦, 90◦). To obtain the complete orientation in
the range of [−180◦, 180◦), we determine whether the robot is facing forwards
or backwards by analyzing two areas in the color classified image over the feet.
Both steps turn out to work quite reliably. However, by focussing on the feet, the
approach is not able to handle lying robots or robots that have a ball directly
at their feet.

4.1 Determining Major Line and Minor Line

To determine the orientation of a robot region, we have defined two lines for
which we are searching in the image. This can be done in the contrast-normalized
Sobel image as well as in the color classified image. The major line is defined
from toe to toe and from heel to heel while the minor line is defined as a side
line of a foot. An example is shown in Fig. 2.

To find these lines, we have created the lower silhouette of the feet by scan-
ning the image upwards for each pixel on the lower robot region border. In the
contrast-normalized Sobel image, a pixel on the silhouette is found when it ex-
ceeds a length threshold. When the color classified image is used, a pixel on the
silhouette is found when it is not green and more than two subsequent pixels are
also not green. After we created the lower silhouette of the feet, we use Andrew’s
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Fig. 3. Illustration of the major line (orange) and minor line (blue) on differently
rotated robots. The silhouette is green. It is evident that there is always a greater sum
of jumps on the silhouette in the range of the major line than on the silhouette in the
range of the minor line.

Monoton Chain Algorithm [1] to determine the lower convex hull. Looking at
the longest three edges with a specific minimum length of the lower convex hull,
it is evident that two of these are the major line and the minor line.

At this point, we have found at maximum three lines and have just to deter-
mine which of these lines are the major line and the minor line. For distinction,
we calculate the sum of all jumps of neighboring pixels in the silhouette, which
have a certain minimum length (the current, experimentally determined length
is 2.4 pixels). The idea is that the major line has the greater sum of jumps be-
cause there is a gap between both feet (see Fig. 3). More precisely, there are
three cases:

– Just one long line: In this case, the robot must have an orientation of approx.
0◦, 90◦, −90◦ or −180◦ and the line is parallel to the x-axis, since in all other
cases there would be a second long line. When the sum of jumps is zero, we
know that the recognized line is the minor line. If the sum of jumps is much
larger than zero, we know that the line is the major line (see Fig.3 a/d).

– Two long lines: In this case, the line with the greater sum of jumps is the
major line and the line with the smaller sum of jumps is the minor line (see
Fig. 3 b/c/e/f).

– Three long lines: This is just a special case which can occur with the NAO’s
feet and an orientation of nearly 180◦. In this case, the line with the lowest
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Fig. 4. Variation of major line (orange) and minor line (blue) in a walking sequence.
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Fig. 5. Location of the major line (orange) and the area that contains more green
pixels (yellow). (a/b) The major line and the yellow marked area are on the same side
when the robot is facing forwards and (c/d) they are on a different side when the robot
is facing backwards.

sum of jumps is the minor line and the line that has the lowest mid point in
the image is the major line.

If both lines have been found, we initially assume that the robot is facing
forwards. To calculate the orientation, we transform the major line and minor
line from image coordinates in field coordinates and define a vector v parallel to
the transformated minor line and calculate the normal vector n to the transfor-
mated major line which is directed towards the observing robot. If v ·n ≤ 0, we
mirror the vector v so it is directed also towards the observing robot. Now we
use the vector v to calculate the orientation α := atan2(−vy,−vx).

The reason for not simply using the normal vector n of the major line is that
the major line obviously has a higher deviation when the robot is walking (see
Fig. 4). If we just found the major line, we simply set α := 0◦ and add a flag
that indicates that there is no information whether the robot is facing forwards
or backwards, so the opposite orientation would be also plausible. When we just
found the minor line, we set α := 90◦ and add the same flag, so that we know
that the orientation is 90◦ or −90◦.
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Fig. 6. (a) First experimental setup and (b) an image made by the upper camera of
the observing robot. The rectangles indicate the inner and outer robot areas identified
by the previously executed robot detection.

4.2 Determing the Facing Direction of a Recognized Robot

Finally, we have to determine whether the recognized robot is facing forwards
or facing backwards. To do this, we span two rectangles starting in the most left
and the most right point of the silhouette (see Fig. 5 a/b), and determine which
of the two areas contains more green pixels.

When the area that contains more green pixels is on the same side as the
major line, we know that the robot is facing forwards. When the area with more
green pixels is on the opposite side, the robot is facing backwards (see Fig. 5
c/d). If we detect that the robot is facing backwards, we just have to add 180◦

or −180◦ to the previously computed orientation α.

5 Evaluation

To evaluate our approach, we performed a number of experiments, differing in
the distance between the robots as well as in the robot motions. In all setups, we
created two silhouettes in each robot region, the first by the contrast-normalized
Sobel image and the second by the color classified image. This allows us to
directly compare the results of the contrast-normalized Sobel image and the
color classified image. In the following, we will present two of our experimental
setups.

5.1 First Experimental Setup: Standing Robots

In the first experimental setup, the observed robot was placed in a distance of
60 cm, 120 cm, 180 cm, and 240 cm to the observing robot and was turned in
22.5◦-steps around its axis for each distance. For accuracy, we used a cardboard
with barely visible marks every 22.5◦. Both robots were just standing still. The
setup is depicted in Fig. 6.



Fig. 7. Results of the first experiment with a distance of 120 cm. The contrast-
normalized Sobel image was used here. x̄ is the arithmetic mean, s is the standard
deviation, and n is the number of evaluated perceptions.

In the evaluation, the returned orientation is classified as completely perceived
when it does not deviate from the original orientation by more than ± 11.25◦

(i. e. more than half of a step). When the algorithm was not able to determine
the facing direction but the returned orientation is within the range of tolerance,
it is classified as semi perceived. The returned orientation is classified as a false
positive when it deviates by more than ± 11.25◦. The category not perceived
means that the orientation detection was not successful. The arithmetic mean
x̄ is calculated over all completely perceived orientations while the standard
deviation s is calculated over all completely and semi perceived orientations.
The count of evaluated frames n differs from orientation to orientation.

In a nutshell, the results were extremly precise with the contrast-normalized
Sobel image. The average false positive rate with 0,3 % at 60cm, 2,5 % at 120cm
(see Fig. 7 for details), and 2,3 % at 180cm is extremely low and the standard
deviation is in nearly all distances up to 180 cm lower than 4◦ in nearly all cases.
Only at a distance of 240 cm, the results were significantly worse.

5.2 Second Experimental Setup: Walking Observed Robot

In the second experimental setup we made, the observing robot is just stand-
ing again while the observed robot is walking in eight different directions with
a speed of approximately 12 cm/s in the first execution and with a speed of
approximtely 20 cm/s in the second execution (see Fig. 8).

In a preprocessing step of the evaluation, we estimated the ground truth ori-
entation by calculating the rounded average of all returned orientations except
for a few runaway values because we did not use the cardbord for exact position-
ing and had no ground truth tracking system available. The returned orientation
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Fig. 8. (a) Second experimental setup and (b) an image made by the upper camera of
the observing robot. The rectangles indicate the inner and outer robot areas identified
by the previously executed robot detection.

is classified as completely perceived or semi perceived when it does not deviate
from the expected orientation by more than (a) ± 22.5◦ in the first execution
and (b) ± 15◦ in the second execution. We chose a higher tolerance in the first
execution as the robot turned slightly while walking.

In some further experiments, the observing robot was also moving (shaking
body and turning head) while the observed robot stands or was also moving.
In these situations, the standard deviation only increases by approximately 5
degrees while the perceiving rate was just slightly affected.

In summary, the results are good. The ratio of false positives to correctly
perceived orientations is in the range of 3

50 to 1
3 depending on the orientation.

In most cases, the reason for the incorrect perception was the wrong assignment
of major and minor lines, so the returned orientation differs about 90◦. The
standard deviation is in the range of 3.0◦ to 11.2◦ depending on the orientation.
With the use of a downstream modeling component, it seems to be possible to
use the orientation information returned by this algorithm to make decisions.
Extended results are shown in Fig. 9.

5.3 Performance

We measured the execution time of single code sections as well as of the total
orientation detection code as a function of the distance to the observed robot. We
expected that the execution time is shorter at a higher distance, as the analyzed
image region that contains the robot feet is smaller. The measurement was done
just with standing robots but one can assume that there will not be a great
difference to walking robots. The algorithm was processed by a NAO.

At a distance of 60 cm, the approach required the longest execution time
with 0.53 ms. The scanning of the silhouette consumes the most time with 0.37
ms in the contrast-normalized Sobel image. It is noticeable that the scanning of
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Fig. 9. Results of the second experiment. The walking speed is (a) approximately 12
cm/s in the first execution and (b) approximately 20 cm/s in the second execution.
The contrast-normalized Sobel image was used here. x̄ is the arithmetic mean, s is the
standard deviation, and n is the number of evaluated perceptions.

the silhouette in the color-classified image takes only 0.13 ms. This is caused by
some operations which are done for every pixel in the contrast-normalized Sobel
image while the pixels can be read directly from the color-classified image.

The function of the total execution time in figure 10 decreases at longer
distances. To also reduce the execution time in a short distance a bit, we could
reduce the sampling rate for the silhouette. As we have seen in the evaluation,
this should not take a great impact on the quality of the result.

6 Conclusion and Future Work

In this paper, we presented an approach that is able to recognize the orientation
of humanoid robots that are standing or walking on a soccer field. Our approach
is both very fast and robust, as the evaluation results show. Furthermore, it
works in combination with color-classified images as well as with the output of
an edge detection, as Fig. 11 shows. The approach has been developed for and
tested in the RoboCup Standard Platform League only, but we assume that the
general idea can be transferred easily to other humanoid robots.

We are currently working on the integration of the orientation data into our
Kalman Filter-based robot tracking. This modeling component will estimate the
robots’ orientation over time and thus probably be able to compensate most
ambiguities of semi perceived robot orientations. Furthermore, team behaviors,
which will be able to exploit this new kind of information, are about to become
developed for the 2017 RoboCup competitions.



60 80 100 120 140 160 180 200 220 240

0

0.1

0.2

0.3

0.4

0.5

0.6

distance between robots (cm)

ex
ec

u
ti

o
n

ti
m

e
(m

s)

total execution

scan silhouette

calculate convex hull

scan area over feet

find borders

distinction of lines

Fig. 10. Average execution time as a function of the distance to the observed robot.
The contrast-normalized Sobel image was used for this experiment.
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2011 – eliminating game delays. In: Röfer, T., Mayer, N.M., Savage, J., Saranlı,
U. (eds.) RoboCup 2011: Robot Soccer World Cup XV. Lecture Notes in Artificial
Intelligence, vol. 7416, pp. 25–36. Springer (2012)

6. Lenser, S., Veloso, M.: Visual sonar: Fast obstacle avoidance using monocular vi-
sion. In: Proceedings of the 2003 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS 2003). vol. 1, pp. 886–891. Las Vegas, USA (2003)



Fig. 11. Combined results of the first and second experimental setup. In addition to the
silhouette, which is calculated by using the contrast-normalized Sobel image (CNS),
we also calculated a second silhouette with the color classified image (CLAS).

7. Loncomilla, P., Ruiz-del Solar, J.: Gaze Direction Determination of Opponents and
Teammates in Robot Soccer. In: RoboCup 2005: Robot Soccer World Cup IX. pp.
230–242. Springer (2006)

8. Metzler, S., Nieuwenhuisen, M., Behnke, S.: Learning visual obstacle detection
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