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1 Introduction

B-Human is a joint RoboCup team of the University of Bremen and the German
Research Center for Artificial Intelligence (DFKI). The team was founded in 2006
as a team in the Humanoid League, but switched to participating in the Standard
Platform League in 2009. Since then, we participated in nine RoboCup German
Open competitions, the RoboCup European Open 2016, and in nine RoboCups.
We won eight of the German Opens, the European Open, and became world
champion six times.

This team description paper is organized as follows: In Sect. 2, we present
a method for estimating the different colors on the field. Section 3 describes
our new approach to determining the field boundary. Our new framework for
efficiently computing neural networks on the NAO robot is outlined in Sect. 4.
Section 5 describes the new ball detection that is based on this framework as
well as improvements we made in tracking the ball. The modularization of our
existing behavior framework is discussed in Sect. 6. Section 7 describes a change
to the B-Human streaming architecture that might interest other users of our
framework. Our work on the GameController suite this year is outlined in Sect. 8.
Finally, we summarize this paper in Sect. 9.

1.1 Team Members

B-Human consists of the following people, most of whom are shown in Fig. 1:

Team Leaders / Staff: Tim Laue, Thomas Röfer.
Students: Andreas Baude, Jan Buschmann, Gerrit Felsch, Jan Fiedler, Mar-

vin Franke, Tryggve Gahrmann, Martin Gerken, Mario Grobler, Paul Luca



Fig. 1: The B-Human team of the 2018 RoboCup season

Habermann, Arne Hasselbring, Jannik Heyen, Markus Ihrig, Jan-Henrik
Kasper, Jonah Klöckner, Gregor Kuhn, Philip Reichenberg, Nicole Schrader,
Lukas Schulze, Timo Urban, Lars Wimmel.

Alumni: Daniel Krause, Bernd Poppinga, Lukas Post, Jesse Richter-Klug, Enno
Röhrig, Alexander Stöwing, Felix Thielke.

Associated Researcher: Udo Frese.

1.2 Publications Since RoboCup 2017

As in previous years, we released our code after the RoboCup 2017 to-
gether with a detailed description [10] on our website and on GitHub (https:
//github.com/bhuman/BHumanCodeRelease). To date, we know of 32 teams
that based their RoboCup systems on one of our code releases (AUTMan
Nao Team, Austrian Kangaroos, BURST, Camellia Dragons, Crude Scientists,
Edinferno, GraceBand, JoiTech-SPL, Luxembourg United, Nao Devils, Naova
ETS, NimbRo SPL, NTU RoboPAL, RECIFE Soccer, Rinobot, SPQR, TJArk,
UChile, Z-Knipsers/NomadZ) or used at least parts of it (Bembelbots, Cerberus,
HULKs, MiPal, MRL SPL, Northern Bites, NUbots, RoboCanes, RoboEireann,
rUNSWift, UnBeatables, UPennalizers, UT Austin Villa). We also described our
team tactics and our approaches to the mixed team competition as well as our
path planner in our 2017 Champion Paper [11].

2 Automatic Color Calibration

Currently our vision is based on the computation of a gray-scaled and a color-
coded version of the camera image. While the gray-scaled image is computed
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Fig. 2: The color-classified image compared to the original image with recognized
field features.

independently, the color-coded version is calibrated manually beforehand using
the YHS color space. The values set are the maximum non-color saturation, the
black/white delimiter, and the hue range of the field color. To cope with the
change of lighting conditions during the game, we chose a new approach that is
capable of adapting to these changes. The color classes black, white, field color,
and other are represented as three dimensional normal distributions in the YHS
space as part of a Gaussian mixture model (GMM).

Since expectation-maximization needs to accumulate samples before predict-
ing the normal distributions and prediction is computationally expensive, the
adaptation algorithm by Zivkovic [14] is used to update them. Samples are
matched to the distributions by two criteria, first the Mahalanobis distance has
to be smaller than three times the standard deviation of the distribution and
second the Mahalanobis distance of the distribution has to be the minimum dis-
tance to any distribution. The GMMs are then updated to match this sample.
The weights for all distributions, except the matching ones, are decreased, while
their weight is raised and their means and variances are shifted to match the
sample. Unfortunately, it is too expensive to update the model with each pixel,
therefore scanlines (compare Fig. 3b) are used to identify color regions. Only the
middle point of each of these regions is used to update the model.

Figure 2 shows the classification on our test field together with the recognized
features drawn into the original image.

3 Field Boundary Detection

All interesting objects, such as the ball and other robots, are located within the
field boundary, which is why the robust detection of it has so many advantages.
For example, the image only needs to be considered up to the field boundary,
saving computing time and avoiding false detections i.e. in the audience and
advertisements. On the other hand, it is also important that the detected field



(a) The normal robot view. (b) Vertical scan lines.

(c) Detected field boundary spots (red
crosses).

(d) The detected field boundary with the
RANSAC algorithm (orange line).

Fig. 3: The main steps of the field boundary detection

boundary does not cut off too much of the image, as otherwise important image
areas would not be scanned.

So far, the field boundary was detected using a convex hull, which was placed
through previously determined spots. In concrete terms, these spots are the
ends of the most field-like region sequence along vertical scan lines. However,
one disadvantage of the convex hull is that it can take on unexpected shapes.
Furthermore, robots or other obstacles can cause the field boundary to drop
along the object. All in all, the modeling of the field boundary using the convex
hull is not optimal.

Since it actually consists only of straight lines that are orthogonal to each
other, a RANSAC approach was implemented that uses this previous knowledge
about the field boundary.

In the first step, possible field boundary spots are searched for along vertical
scan lines, as it was done in our previous approach. In the second step, two lines
and their intersection are calculated in each RANSAC iteration. This results in
three potential models: the resulting corner and the two individual lines. These



three models are checked based on which one describes the calculated spots best.
In the case of two lines, additional conditions apply. The lines projected to the
field must be nearly orthogonal to each other, i. e. there must be an angle of 90
degrees between them within a certain tolerance range. Furthermore, the obtuse
angle must point to the robot, because otherwise the robot would stand outside
the field.

4 Fast Inference of Neural Networks

With the new ball detector using a neural network for classification—and several
other experiments utilizing deep learning in the works—it became a necessity to
add the possibility of inferring neural networks to the B-Human code base. For
this task, other teams have already taken various approaches. As two examples,
Nao-Team HTWK linked their code with the Caffe library [8] while the Nao
Devils Dortmund programmed a Matlab script to translate the models they
train in Matlab to C++ code [4].

For our solution, we wanted to achieve the best possible performance while
having a solution that is general enough to support the different architectures of
networks we use in our experiments. Because we do not train models at runtime,
only inference of pre-trained models needed to be implemented. While using a
pre-built library such as Caffe [5] or Tensorflow [1] would cover the generality
requirement, these do not offer optimal performance in all cases because they are
generally optimized for using GPUs using CUDA. Actually, the CPU implemen-
tation of neural network inference in Caffe relies on the installed BLAS library,
while Tensorflow uses the experimental Eigen extension for tensor math, both
of which are not guaranteed to be optimized for the NAO’s limited hardware.

Thus, we decided to build our own lightweight implementation for neural
network inference. It is designed to read models from a file at runtime and
translate them to pure x86 machine code exposed as C++-functions. That means
that using a neural network model in a B-Human module is done using a simple
function call. This approach offers very good locality of code and data which
is a good prerequisite for caching and allows for low-level optimization of the
generated code for the given purposes. Not only can it utilize all SIMD features
of the NAO’s CPU, but also exploit several static pieces of information about a
given model during compilation to generate faster code. For example, depending
on the size of kernels, inputs and outputs in a given layer, loops can be unrolled
or different strategies for accumulating results can be chosen. Optimizations on
a larger scale are possible as well, e. g. if a convolutional or dense layer does not
have an activation function and is followed by a batch normalization along the
feature axis, the normalization can be integrated into the layer by adjusting its
weights accordingly.

For storing neural network models, we use a simple binary file format and
created a Python script based on kerasify [12] to export Keras [3] models into
that format. In the future, using other libraries than Keras for training models
would be possible by adding exporters for these libraries to our format as well.



Fig. 4: The developed neural network consists of ten layers. The values in the
square brackets describe the number of parameters. The values in the parentheses
describe the shape of the corresponding output.

5 Ball Localization

This year, our modules for detecting and tracking the ball saw several improve-
ments.

5.1 Ball Perception

As the SPL moves towards a realistic soccer scenario, the environment becomes
more unreliable. This makes it harder to model everything properly. Therefore,
even sophisticated methods such as our CNS BallPerceptor [10] reached their lim-
its. However, these limitations can be overcome with the application of machine
learning. Because Neural Networks, especially Convolutional Neural Networks
(CNNs), have shown great success in image classification [7] and are already
well established in the RoboCup, for instance by the Nao-Team HTWK [8], we
decided to use them, too. However, we did not want to restructure the whole ball
perception pipeline, therefore we rely on the existing regions of interest which
are calculated conventionally. These so-called spots are used to calculate 32x32
pixel patches which may contain a ball. By computing the estimated size of a
ball that would be at that position, it is possible to scale the patches so that the



Fig. 5: A sequence of images captured while observing a kicked ball during a test
game. Detected balls are denoted by circles of different colors, depending on the
detector response: orange means a high probability that the detected object is
actually a ball, blue means a medium probability. As one can see in this example
sequence, rolling balls cannot be detected robustly. Please note that the images
have been significantly compressed for logging purposes.

ball covers always approximately the same area of the patch. For each patch, a
probability that it contains an actual ball is calculated by the neural network
which is shown in Fig. 4. Because the result of the classification only tells us
if there is a ball in a spot, but not where exactly, we use a Hough-based ball
perceptor to determine the actual position of the ball in the patch after we have
found a patch that is likely to contain a ball.

5.2 Ball Tracking

The currently used ball detection approach as well as the edge-based approach
used in previous years, does not only provide a binary decision about something
being a ball or not. Instead, it also provides detected objects that might be a ball
but have a detector response that is too low to be sure. These detections cannot
be used directly for the ball tracking process as false positives, e. g. in robot
parts, occur frequently. Unfortunately, rolling balls, which are quite important
to see to carry out blocking motions, cannot be detected reliably and often lead
to low detector responses. One example is given in Fig. 5.

However, the motion of a ball provides enough context to integrate low-
quality detections. Given a sequence of ball detections as well as a proper model
for ball motion (including friction on the ground), we perform a least-squares
estimation to determine if the hypothesis of a rolling ball (that has a realistic
velocity) is more plausible than the hypothesis of a stationary ball. If the former
is the case, the ball detections are integrated into the actual state estimation
process, which is based on a set of Kalman filters. If the latter is the case, the



ball detections have to be ignored as they could be repeatedly seen false positives,
e. g. in a robot leg.

6 Behavior Infrastructure

Since 2013, B-Human has used CABSL [9] to describe the robot behavior as a
hierarchy of finite state machines. In addition, so-called libraries provide func-
tionality that is called from the state machine but does not fit into the dataflow
oriented framework of representations. However, the behavior hierarchy is still
completely contained in one state machine. This has some disadvantages: These
components cannot be exchanged easily or load their own numeric parameters
from configuration files. It is also hard to create coordinated team plans for spe-
cific situations, such as set plays. This is especially important due to the new
free kick rules.

In the RoboCup Small Size League, an architecture called “Skills, Tactics,
and Plays” has been established for many years [2] and recently been employed
in the Mid Size League [6]. To implement a similar system based on these ideas
and to solve some of the problems mentioned above, another abstraction called
behavior option has been introduced. Behavior options are declared similarly
to modules (cf. “3.3.2 Module Definition” in [10]), such that they can specify
their own requirements for representations and parameter sets. However, all
behavior options are executed in the context of a single module which inherits
the requirements of all of them. A behavior option can contain a CABSL state
machine, a simple switch-case-block or a completely different representation of
a behavior.

The most important addition to the old system is the PlaySelector. It is in-
voked one level above the normal role selection (cf. “6.2.1 Roles and Tactic”
in [10]), so team-wide special situations can override the normal play. The play-
book configures the set of plays among which can be chosen during the game.
The selection method is based on binary applicability conditions and a numeric
value specified by each play to compare them. Team coordination is achieved by
letting each robot send its currently active play in its WiFi message. On each
robot, the PlaySelector checks if there is another robot leading a play and, in
that case, checks whether that play is possible to execute according to the own
world model.

7 Framework Changes

Many datatypes in the B-Human system are streamable, i. e. they can be serial-
ized to and from data streams, e. g. for reading them from a file. This technique
was originally developed as part of the GermanTeam framework [13]. Part of the
streaming architecture is the ability to determine the specification of datatypes
at runtime, for instance, to be able to read them from a structured configuration
file. However, in its original implementation, streaming was mainly used as a



debugging feature, e. g. to inspect data structures with an external PC at run-
time. Therefore, the approach that was selected to acquire the specification of
datatypes did not need to be very efficient, because it was rarely used when not
debugging. As a result, the specification was determined during streaming, i. e.
while the data was serialized its specification was recorded. In the current B-
Human system, streaming is used much more often during the normal execution
than in the GermanTeam system. In particular, the robots log a lot of data while
they play soccer. It turned out that determining the specification over and over
again while logging created a significant overhead. For instance last year, logging
took around 1 ms per frame in the thread that performs image processing.3

Therefore, in the 2018 B-Human framework, the specification of all stream-
able datatypes is now determined only once at the beginning of the program.
This would normally require a larger manual coding overhead, because a sepa-
rate method is needed for each streamable datatype to record the specification.
However, since most streamable datatypes in the B-Human system are gener-
ated from macros by the C++ preprocessor, this change did not require any
manual changes for most datatypes. The new approach simplifies the access to
the specification of datatypes, because it is now immediately available, while
before, it was only available for datatypes that had been streamed at least once.
In addition, streaming the data to be logged is now seven times faster, freeing
up processing time for other tasks.

8 Infrastructure for the League

As in previous years, we improved the infrastructure of the league. This year, this
effort was again financially supported by the RoboCup Federation as a project
for league development. As the major change, we integrated the new penalty free
kick and goal free kick into the GameController suite. However, at the RoboCup
German Open 2018, only 23% of all pushing calls resulted in a pushing free
kick.4 This shows that the referees still have to get used to the new rule. Also,
23% of all balls played out resulted in a goal free kick.

Penalty times only end prematurely at the end of a half or a timeout. They
are not counted down in the state Set. Their increase is never reset during a game
and is larger now. At the RoboCup German Open 2018, all this only slightly
lowered the average penalties per game from 9 in 20175 to 8.2 in 20184, although
robots were longer out of play than in the previous year.

A lot of minor changes were implemented as well. For instance, the process
of player substitution was simplified. The support for the coach and manual
penalization was removed. The TeamCommunicationMonitor checks for the new,

3 The actual writing to disk is performed in a separate thread in the background. Its
speed is only limited by the write speed of the target medium.

4 http://spl.robocup.org/wp-content/uploads/downloads/

RoboCupGermanOpen2018Statistics.pdf
5 http://spl.robocup.org/wp-content/uploads/downloads/

RoboCupGermanOpen2017Statistics.pdf

http://spl.robocup.org/wp-content/uploads/downloads/RoboCupGermanOpen2018Statistics.pdf
http://spl.robocup.org/wp-content/uploads/downloads/RoboCupGermanOpen2018Statistics.pdf
http://spl.robocup.org/wp-content/uploads/downloads/RoboCupGermanOpen2017Statistics.pdf
http://spl.robocup.org/wp-content/uploads/downloads/RoboCupGermanOpen2017Statistics.pdf


smaller network packages and whether they are only sent three times per second
instead of five times. The team communication logs from the RoboCup German
Open 2018 were again made available online.6

9 Summary

As in most previous years, B-Human once again has many team members who
have changed and improved many parts of the system. In this paper, we have
described some of the major changes that are planned to come into use during the
RoboCup 2018 competition. Among some infrastructure improvements, we again
have a strong focus on making the vision parts of our system more robust. This is
necessary as the league continuously moves forward towards more realistic (and
thus more challenging) lighting conditions. We are about to switch multiple of
our object detection modules to a neural network-based solution, which appears
to be a good approach in the SPL context and which is already used by multiple
other teams. To avoid wasting computing time, we have always limited our object
detection to objects that are on the field of play. A detection of the field itself has
always been based on its major color: green. Having more dynamic lighting, this
process has now become more complex, as described in this paper. Overall, our
changes contribute to keep the high performance of our team under even more
challenging conditions. Thus, we are looking forward to a successful participation
in the RoboCup 2018 in Montréal!
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– team tactics and robot skills in the standard platform league. In: Obst, O.,
Tonidandel, F., Akiyama, H., Sammut, C. (eds.) RoboCup 2017: Robot World
Cup XXI. Lecture Notes in Artificial Intelligence, Springer (2018), to appear

12. Rose, R.W.: kerasify. https://github.com/moof2k/kerasify (2016)
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