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Abstract. The team B-Human won the main competition and, together
with the team HULKs, the Mixed Team Competition in the RoboCup
Standard Platform League 2017. In this paper, we argue that in the cur-
rent state of the league, the development of sophisticated robot behaviors
makes a difference between the top teams, while other abilities such as
perception, modeling, and motion have been solved to a similar degree
by the different top teams. We describe our general tactical approaches
for the main competition as well as for the Mixed Team competition. In
addition and as an example for a behavior-related robot skill, we present
our approach to realtime path planning for humanoid robots with limited
processing power.

1 Introduction

B-Human is a joint RoboCup team of the University of Bremen and the German
Research Center for Artificial Intelligence (DFKI). The team was founded in
2006 as a team in the Humanoid League, but switched to participating in the
Standard Platform League in 2009. Since then, we participated in eight RoboCup
German Open competitions, the RoboCup European Open, and nine RoboCups
and only lost four official games. As a result, we won all German Open and
European Open competitions, the RoboCups 2009, 2010, 2011, 2013, and 2016.
This year, we won both the main competition and, together with the team
HULKs as the team B-HULKs, the newly introduced mixed team competition.
We also won the technical challenge, i. e. the penalty shootout competition.

This paper is organized as follows: Section 2 motivates the focus on behavior
development in the Standard Platform League, followed by an explanation of the
tactics currently employed by B-Human in Sect. 3. The adjustments made for
the Mixed Team Competition are described in Sect. 4. Section 5 gives a detailed
explanation of B-Human’s path planner. Finally, Sect. 6 sums up this paper and
names potential for future improvements.



2 The Importance of Robot Behaviors in the RoboCup
Standard Platform League

The overall challenge of creating successful software for the RoboCup Standard
Platform League can be seen as a set of major sub-challenges that have to be
solved:

Vision. All major field elements need to be perceived reliably (i.e. without many
false negatives and positives) over reasonable distance and with computa-
tional efficiency.

Modeling. To keep track of the own position, the position and velocity of the
ball as well as of other robots on the field, modeling algorithms have to
compute precise and stable state estimates.

Motion. A fast and robust walk, preferentially combined with a flexible and
strong kick, is a necessity to perform competitively in the adversarial
RoboCup scenario.

Behavior. To select the right actions, given the currently estimated state of the
surrounding world, a flexible behavior is needed. Especially for playing in a
team of five or more robots, many details, such as a stable role assignment,
have to be addressed.

As in other RoboCup soccer leagues, the rules of the game are changed
every year to make the overall problem harder and more similar to professional
human football. Each year, these changes often only focus on one or two of the
aforementioned areas. In recent years, major changes have been the introduction
of white goals, the start of play by blowing a real whistle, the black and white ball
(all affecting perception and modeling), arbitrary jersey designs (perception),
and artificial grass (motion). All top teams have solved these challenges in a
robust manner. There exist different solutions that each have certain advantages
and disadvantages, but all can be considered to have an overall similar level of
quality. For instance, for ball detection, there are pure model-based approaches
such as the one used by B-Human [6] as well as many solutions that involve
the training of a classifier such as the one by UT Austin Villa [3]. In general,
when considering the implementations of the top teams, balls can be perceived
over distances of several meters, robots can walk with decent velocity, and self-
localization is precise and robust. Thus, further major improvements in these
areas would not be any game changer.

One can notice that there have not been any major rule changes directly
affecting the behavior. Furthermore, major properties of the overall setup – the
size and design of the field as well as the number of robots – remained constant.
There will probably some changes in 2018, e. g. the introduction of free kicks, but
this has not finally be decided at the point of time when writing this paper. Thus,
the current behaviors of all teams have evolved over multiple years. Furthermore,
the behavior seems to be the one part that is missing in most code releases of the
top teams, i. e. one can consider the actual implementations of low level behaviors
such as ball handling and dribbling as well as the formulas and parameters for



Fig. 1: RoboCup 2017 final between B-Human (black jerseys, playing from left
to right) and Nao-Team HTWK (blue jerseys, playing from right to left). The
ball is in midfield and both teams distribute their robots over the field according
to their respective tactical concepts.

tactics such as roles and positioning as secret. In contrast, the formalism in
which the behavior is specified is often known. Many teams, such as B-Human,
use hierarchical finite state machines, e. g. using CABSL [7].

In summary, given similarly competitive solutions for most other tasks and a
certain level of secrecy in behavior development, one could say that in the current
Standard Platform League, the development of robot and team behaviors is a
crucial aspect that makes a difference.

3 Current Tactics

When playing with five robots per team, the number of possible tactics and
team formations is quite limited. When assigning the goalkeeper task to one
specific robot and letting this robot stay within its own penalty area, as it is
done by B-Human and almost all other teams, only four field players remain for
specific tasks. It is common among the top teams to not assign fixed roles to field
players but to perform a permanent task negotiation via wireless communication.
When assigning roles, various information is taken into account by the B-Human
robots, such as the information about a robot’s maximum velocity, which is not
very high compared to the size of the current field and which makes it necessary
to maintain a reasonable coverage of the field throughout all game situations.

The current roles in normal games (that slightly differ from those used in
the Mixed Team Competition, as described in Sect. 4) are: two defenders that
dynamically adapt their positions depending on the current ball position, one
striker that always approaches the ball, and one supporter that is mainly waiting
in an offensive position to perform a rebound in case of a successful save of the
opponent goalkeeper. A typical formation is depicted in Fig. 1.

This approach puts a focus on a strong defense and realizes offensive play
by long distance shots – made possible by the kick implementation described in
[4] – towards the opponent goal. Overall, this tactic appears to work well. At



Fig. 2: Heatmaps of the whole teams of the two 2017 finalists: B-Human (left
image, playing from left to right) and Nao-Team HTWK (right image, playing
from right to left). The darker a square, the more time it has been been occupied
by a robot of the respective team. The figure has been created by using the Team
Communication Monitor log files that are publicly available at the Standard
Platform League’s website [5].

RoboCup 2017, B-Human was, on the one hand, the Champions Cup team that
received the least goals (one goal in 116 minutes of play) and was, on the other
hand, among the teams that scored the most goals (34 goals, only the Nao Devils
scored more – 36 goals). Detailed results can be found on the league’s website
[5]. The heatmap in Fig. 2 shows a summary of the placement of the robots over
the whole final game.

The 2017 final opponent, Nao-Team HTWK, which is one of the most success-
ful teams in this league, has a different tactical approach: There is no offensive
supporter waiting for long balls as the robots do not shoot in general. Instead,
ball possession is gained in midfield, where three robots are placed, and the ball
is dribbled towards the opponent goal. This is nicely reflected by the heatmap in
Fig. 2. Although being quite different, this approach also led to a high number
of scored goals (28) and only few received goals (5).

By comparing the different heatmaps of both teams, there is one noticeable
issue: the corners of the opponent half are almost not occupied. This is in stark
contrast to human soccer, where it is common to dribble towards the ground
line and to pass cross the opponent’s goal. It appears to be worth investigating
to implement such behaviors in the future.

4 Mixed Team Competition

This year, the Mixed Team Competition was held for the first time, replacing the
Drop-In Competition, which had been the Standard Platform League’s testbed
for multi-agent cooperation from 2014 until 2016 and which B-Human won twice.
For the first year of this new competition, each mixed team consisted of a pair
of normal teams. This pairing remained fixed over the whole competition and



had to be defined in advance, i. e. together with the teams’ application for the
main competition.

As we are convinced of the necessity of performing many full system tests
under realistic conditions to achieve a high performance in a competition, we
were looking for a partner team that we could meet several times for testing
and coordination. Given these prerequisites, the HULKs have been the perfect
partner. Their university is only about one hour away from Bremen and they
were also strongly committed to the Mixed Team Competition.

As in this competition both members of a mixed team use their own soccer
competition code base, only two major issues have to be resolved for playing
together as a team: agreeing on a strategy for playing with six robots and speci-
fying a standard communication protocol that extends the rather basic elements
of the SPL standard message. To provide a real multiple-teams robot cooper-
ation, the standard communication protocol was the only code shared between
the two teams. The protocol is documented in the B-Human team report [6].

4.1 Strategy Agreements

Since the normal B-Human five-robot strategy has shown very good results in
the past years (in comparison to the state-of-the-art team play in the Standard
Platform League), the combined team agreed to use basically the same, but split
the former support role (cf. “6.2.1 Roles and Tactic” in [6]).

However, as role names, we now used chess pieces:

King. The goalkeeper robot.
Queen. The ball-playing robot.
Rooks. Two robots that are positioned defensively, moving mainly horizontally

in front of the goal.
Knight. A robot that is positioned offensively to help the Queen, jumping in

when she looses the ball.
Bishop. A robot that is positioned far inside the opponent half to be able to

receive a pass.

The general well-tried procedure is that every robot is calculating a role
selection suggestion for itself and each connected teammate, but uses the role
selection of the captain robot. The captain robot is determined by the lowest
(not penalized) connected teammate number. The reason behind this procedure
is to always have a suggestion available but inhibit the chance that the robots
play with different role selections at the same time. Furthermore, we decided that
all B-Human teammates have a smaller number than their HULKs colleagues
to additionally support the selection robustness (because we reduce the possi-
bility of switching between slightly different algorithms). True to the wish of
maximizing the inter-team soccer play we force our robots to spread themselves
over the field equally (by role selection). In fact, the full B-HULKs lineup had a
B-Human robot with the role King, Rook, and Queen-or-else-Knight, completed
with HULKs robots as Rook, Bishop, and Queen-or-else-Knight. Figure 3 shows
an example of a standard positioning.



Fig. 3: An example scene of a possible B-HULKs match. B-HULKs robots wear-
ing black (B-Human) or gray (HULKs) jerseys. From left-to-right they are cur-
rently performing the roles King, Rook, Rook, Knight, Queen, and Bishop.

4.2 Collaborative Field Coverage

The black-and-white ball cannot be seen across the whole field and the field of
view of the robot is not very wide. Therefore, if the ball is lost, it is searched for
in a coordinated team effort. B-Human robots use a common model for the field
coverage (cf. Fig. 4), which is gradually synchronized through team communi-
cation. Based on this, each robot will look at positions nearby, which have not
been observed for a long time. To allow each individual robot to still create the
model when playing together with HULKs robots, all teammates broadcast their
estimated pose on the field, head posture, and all obstacles detected. Using this
information together with an occlusion model (cf. Fig. 5), our robots add the
field of view of the non-B-Human robots to their own coverage model, allowing
them to search for the ball as if being in a B-Human-only team.

4.3 Additional Adjustments

For the positioning in the Ready state, i. e. preparing for a kickoff, the general
method used by B-Human (cf. “6.2.6 Kickoff” in [6]) has been implemented by
the HULKs. However, due to the special role assignment in Mixed Team games,
the procedure needed to be slightly adjusted. Otherwise, it could have hap-
pened that two robots of the same team take defensive positions, which would
cause instant position switching after kickoff because of their different roles (cf.
Sect. 4.1). Therefore – in contrast to regular games – the role assignment is also



Fig. 4: An illustration of the common
coverage model. The field is discretized
into 12 × 18 areas. Green areas were
observed recently, while red areas have
not been observed for a longer time.

Fig. 5: Occlusion of the field of view
with an average head posture. De-
pending on the head posture, the oc-
clusion caused by the own body dif-
fers by several square meters.

active during the Ready state, and the Ready position selection checks each pos-
sible assignment for constraints that disallow certain role-position combinations.

Another piece of team play that has been coordinated between B-Human and
the HULKs is the handling of balls near the King (i. e. the goalkeeper). In this
case, the King communicates its intention to play the ball. The Queen would
then get out of the way of the King.

In the area of modeling, the whistle and the obstacle model have been com-
municated between HULKs and B-Human robots to build a more complete world
model.

4.4 Competition Results

During the competition, the B-HULKs played four games and won all of them,
although the final win required an additional penalty shootout. As both teams
have robust implementations of all basic abilities required, such as stable walking,
ball recognition, and self-localization, all robots on the field were able to play
together reliably according to the strategy described above. The robots from B-
Human and the HULKs equally contributed to our success in this competition.

5 Path Planning

Implementing the different roles often requires robots to be able to walk from
one position on the field to another one without bumping into other robots, e. g.,
when walking to their kickoff positions or when walking to a distant ball. In these
cases, a purely reactive control can be disadvantageous, because it usually would
not consider obstacles that are further away, which might result in getting stuck.
Therefore, our robots use a path planner in these situations since 2011. Until
2014, it was based on the Rapidly-Exploring Random Tree approach [2] with
re-planning in each behavior cycle, i. e. for each new image taken. Although the



Fig. 6: Visualization of the planning process. The robot on the left of the center
circle plans a path to a position suitable to kick the ball on the right towards
the opponent goal. The obstacle circles and the edges expanded are shown in
yellow. Sectors of the obstacle circles that are not traversable, either because they
overlap with another circle or they are too close to the field border, are depicted
in red. Barriers the robot is not allowed to cross, either to avoid walking through
the goal net or because it should not enter its penalty area, are also shown in
red. The shortest path determined is marked in green.

planner worked quite well, it had two major problems: On the one hand, the
randomness sometimes resulted in suboptimal paths and in oscillations4. On the
other hand, it seemed that the RRT approach is not really necessary for solving
a 2-D planning problem, as the planner actually did. Thus, it was slower than it
needed to be.

5.1 Approach

Therefore, it was replaced by a visibility-graph-based 2-D A* planner (cf. Fig. 6).
The planner represents obstacles as circles on which they can be surrounded and
the path between them as tangential straight lines. As a result, a path is always
an alternating sequence of straight lines and circle segments. There are four
connecting tangents between each pair of non-overlapping obstacle circles, only
two between circles that overlap, and none if one circle contains the other (cf.
Fig. 7). In addition, the current position of the robot and the target position are
only points, not circles, which also influences the number of tangents. A robot
can either walk in clockwise or in counter clockwise direction around an obstacle.
It also always walks forward. This means that it has to leave a circle in the same
direction it has entered it. In the path planning problem, this actually results in
two nodes per obstacle circle, one for clockwise movement and one for counter
clockwise movement, which are not directly connected.

4 Although the planner tried to keep each new plan close to the previous one.
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Fig. 7: Seven different combinations of nodes with the corresponding walking
directions on the circles (point, clockwise, counter clockwise). a) Point to point.
b) Point to circle. c) Circle to point. d) Circle to circle. e, f) No tangents if point
or smaller circle is inside other circle. g) Circles overlap.

With up to nine other robots on the field, four goal posts, the ball, and the
optional requirement to avoid the own penalty area, the number of edges in the
visibility graph can be quite high. Thus, the creation of the entire graph could
be a very time-consuming task. Therefore, the planner creates the graph while
planning, i. e. it only creates the outgoing edges from nodes that were already
reached by the A* planning algorithm (cf. Fig. 6). Thereby, the A* heuristic
(which is the Euclidean distance) not only speeds up the search, but it also re-
duces the number of nodes that are expanded. When a node is expanded, the
tangents to all other visible nodes that have not been visited before are com-
puted. Visible means that no closer obstacle circles intersect with the tangent,
which would prevent traveling directly from one circle to another. To compute
the visibility efficiently, a sweep line approach is used (cf. Fig. 8a). However,
correctly ordering the circles by their distance would require quite a lot of book-
keeping, because of their different sizes and their possible intersections (cf. circle
5 in Fig. 8a). Instead, the sweepline is just ordered by the closest distances be-
tween circles and to check whether the endpoint of a tangent is reachable, the
tangent is intersected with all circles in the sweepline the furthest point of which
is closer than the closest point of the tangent’s target circle. This means that not
only the first entry in the sweepline is checked, but all entries until the upper
bound is reached. However, in most cases, this still means that only a single
entry is checked. As a result, the planning process never took longer than 1 ms
per behavior cycle in typical games.
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Fig. 8: a) Computing edges from tangents using a sweepline ordered by distance
(here for tangents starting in counter clockwise direction). All tangents are pro-
cessed ordered by their direction. Right tangents enter a circle into the sweepline,
left tangents remove a circle from the sweepline. The tangents with an endpoint
that is the closest in that direction are kept (depicted as solid lines), all other
tangents are removed (depicted as dotted lines). b) An example for reaching the
same circle twice.

5.2 Avoiding Oscillations

Re-planning in each behavior cycle bears the risk of oscillations, i. e. repeatedly
changing the decision, for instance, to avoid the closest obstacle on either the left
or the right side. The planner introduces some stability into the planning process
by adding an extra distance to all outgoing edges of the start node based on how
far the robot had to turn to walk in the direction of that edge and whether the
first obstacle is passed on the same side again (no extra penalty) or not (extra
penalty). Note that this does not violate the requirement of the A* algorithm [1]
that the heuristic is not allowed to overestimate the remaining distance, because
the heuristic is never used for the outgoing edges of the start node.

5.3 Overlapping Obstacle Circles

The planning process is a little bit more complex than it appears at first glance:
As obstacles can overlap, ingoing and outgoing edges of the same circle are not
necessarily connected, because the robot cannot walk on their connecting circle
segment if this is also inside another obstacle region. Therefore, the planner
manages a set of walkable (non-overlapping) segments for each circle, which
reduces the number of outgoing edges that are expanded when a circle is reached
from a certain ingoing edge (cf. Fig. 6). However, this also breaks the association
between the obstacle circles and the nodes of the search graph, because since
some outgoing edges are unreachable from a certain ingoing one, the same circle
can be reached again later through another ingoing edge that now opens up the
connection to other outgoing edges (cf. Fig. 8b). To solve this problem, circles
are cloned for each yet unreached segment, which makes the circle segments the



actual nodes in the search graph. However, as the graph is created during the
search process, this cloning also only happens on demand.

5.4 Forbidden Areas

There are two other extensions in the planning process. Another source for un-
reachable segments on obstacle circles is a virtual border around the field. In
theory, the shortest path to a location could be to surround another robot out-
side of the carpet. The virtual border makes sure that no paths are planned
that are closer to the edge of the carpet than it is safe (cf. Fig. 6). On demand,
the planner can also activate lines surrounding the own penalty area to avoid
entering it. The lines prevent passing obstacles on the inner side of the penalty
area. In addition, edges of the visibility graph are not allowed to intersect with
these lines. To give the planner still a chance to find a shortest path around
the penalty area, four obstacle circles are placed on its corners in this mode. A
similar approach is also used to prevent the robot from walking through the goal
nets.

5.5 Avoiding Impossible Plans

In practice, it is possible that the robot should reach a position that the planner
assumes to be unreachable. On the one hand, the start position or the target
position could be inside obstacle circles. In these cases, the obstacle circles are
“pushed away” from these locations in the direction they have to be moved the
least to not overlap with the start/target position anymore before the planning
is started5. For instance in Fig. 6, the obstacle circle surrounding the ball was
slightly moved away to make the target position reachable.

On the other hand, due to localization errors, the start and target location
could be on different sides of lines that should not be passed. In these cases, the
closest line is “pushed away”. For instance, if the robot is inside its penalty area
although it should not be, this would move the closest border of the penalty area
far enough inward so that the robot’s start position appears to be outside for
the planning process so that a solution can be found.

6 Conclusion and Future Work

For successfully playing robot soccer and winning the RoboCup, several sub-
problems need to be solved. In this paper, we represented the hypothesis that in
the current state of the RoboCup Standard Platform League, the development
of sophisticated robot behaviors makes a difference between the top teams, in
contrast to other tasks such as perception or motion, which have converged to
solutions of similar quality.

5 Note that when executing the plan, these situations are handled differently to avoid
bumping into other robots.



As examples, we described our general tactical approaches for the main com-
petition as well as for the Mixed Team competition, which we also won together
with the HULKs. Furthermore, as an example for robot skills, our realtime path
planning approach has been presented.

As there are still many open issues, regarding team tactics as well as robot
skills, that have not been solved yet by any team, one major focus for RoboCup
2018 will be on the further improvement of the robot behaviors. In addition,
the Standard Platform League currently plans to introduce some major changes
such as free kicks that will require even more behavior development.
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