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1 Introduction

B-Human is a joint RoboCup team of the University of Bremen and the German
Research Center for Artificial Intelligence (DFKI). The team was founded in 2006
as a team in the Humanoid League, but switched to participating in the Standard
Platform League in 2009. Since then, we participated in seven RoboCup German
Open competitions and in six RoboCups. We always won the German Open and
became world champion four times.

As in previous years, we released our code after the RoboCup 2014 to-
gether with a detailed description [4] on our website and on GitHub (https:
//github.com/bhuman/BHumanCodeRelease). Up to date, we know of 21 teams
that based their RoboCup systems on one of our code releases (AUTMan Nao
Team, Austrian Kangaroos, BURST, Camellia Dragons, Crude Scientists, Edin-
ferno, JoiTech-SPL, NimbRo SPL, NTU Robot PAL, SPQR, UChile, Z-Knipsers)
or used at least parts of it (Cerberus, MRL SPL, Nao Devils, Northern Bites,
NUbots, RoboCanes, RoboEireann, TJArk, UT Austin Villa).

This team description paper is organized as follows: In the next section, we
present all current team members, followed by the descriptions of our newest
developments since the end of RoboCup 2014. As the new rules changed the
color of the goals from yellow to white, i. e. from a rather special color to one
that is very common in the environment of a RoboCup soccer field, the detection
of goals had to be adapted (cf. Sect. 3.1) and the detection of new features on
the field was added (cf. Sect. 3.2). We continued to automate the calibration of
extrinsic camera parameters (cf. Sect. 3.3). Regarding the robots’ motions, we
improved the dynamic use of the arms (cf. Sect. 4.1) and we took measures to
keep the joint temperatures low in potentially long play-off games (cf. Sect. 4.2).
We also worked on our framework again (cf. Sect. 5.1), which is mainly interesting
for teams that based their systems on our framework. In addition, we developed
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Fig. 1: The B-Human team after winning the RoboCup German Open 2015

a new tool for the league that monitors the communication between the robots
on the field (cf. Sect. 5.2). Finally, this paper ends with a short summary (cf.
Sect. 6).

2 Team Members

B-Human currently consists of the following people, most of whom are shown in
Fig. 1 (left to right, top to bottom):

Team Leaders / Staff: Judith Müller3, Tim Laue, Thomas Röfer.
Students: Felix Thielke, Jesse Richter-Klug, Jonas Stiensmeier, Arne Böck-

mann, Jan-Bernd Vosteen, Patrick Glaser, Florian Maaß, Alexis Tsogias,
Alexander Stöwing, Andreas Stolpmann, Vitali Gutsch, Maik Schünemann3.

Associated Researchers3: Udo Frese, Dennis Schüthe, Felix Wenk.

3 Vision

3.1 Detection of White Goals

The most important rule change from last year is the introduction of white
goals. While yellow goals were relatively easy to detect based on color alone,
white is much more common in the environment. For instance, at the RoboCup
German Open 2015, white boards were standing around the field, including the
background of the goals, and a white column was located next to the field. In

3 Not shown in the photo.



Fig. 2: On the left, the (simulated) image of a goal is shown, where the areas
around the goalposts are convolved with the Sobel operator. The right (simu-
lated) image shows detected goal with the identified left and right goalposts.

addition, the construction of the goal that holds the net can also be (and often
is) white according to the rules. For the German Open 2015, we improved our
goal detector for yellow goals, which uses a region based approach (cf. [3]). Last
year’s version was purely based on color segmentation, which could not succeed
anymore, since the white goalposts could actually appear in front of other white
surfaces in the camera image. Therefore, an edge detection was added to the
goal detector as well as a lot of sanity checks. However, there still were quite a
number of false positives, where goalposts were detected in other robots and the
boards surrounding the field. In many cases, our self-localization module is able
to filter wrong detections out, but this did cannot work in all cases.

Therefore, we are currently developing a new goal detector for the RoboCup
2015. The new approach searches for white regions directly below the field bor-
der, because the rules define what can be visible on the field (i. e. robots, goals,
the ball, and referees wearing black or dark blue), but it is unknown what could
be seen outside the field. If something white is found, it should either be a robot
or a goalpost. The latter has an expected size that can be determined from the
location of its foot point in the image and the goal size described in the rules. A
sub image that covers the area of the expected goalpost is then convolved with
the Sobel operator to create an edge map of the goalpost (cf. Fig. 2).

On this edge map, a Hough transform is used to detect lines. The accumulator
array will only be filled with lines that have a certain angle in the image. The
angle is calculated by estimating how a vertical line in reality would be seen
in the image, which is not necessarily exactly vertical because of the camera
perspective and the rolling shutter effect.

Afterwards, the detected lines are fitted onto a model of the goal to validate
whether the region observed belongs to a goal. If two goalposts are found, the
same procedure is then applied to the crossbar to validate the hypothesis.

3.2 Detection of Penalty Area and Penalty Mark

As the goal detection is not as reliable as it was before, our robots are now detect-
ing other complex features on the field to compensate for that problem. These



Fig. 3: Penalty mark detection and penalty area detection from lines (left) and
from L and T intersections (right)

features are the penalty mark and the lines and intersections that constitute the
penalty area. They are both valuable for the self-localization, because they only
exist twice on the field, in contrast to most of the lines and intersections that
our vision system has already been able to detect before.

On the left, Fig. 3 shows an image recorded by a robot during a practice
match. The position of the penalty mark detected is marked by a blue X. The
two parallel lines of the penalty area are labeled as a goal keeper would see them
when standing in its goal.4 The detection of the penalty mark builds upon early
phases of the line detection in which points are identified that could potentially
belong to a field line. Such points that were not joined with others to form a
field line, which requires minimum distance, are candidates for the penalty mark.
They are accepted as such if their surroundings in a distance bigger than the
dimensions of a penalty mark contain (almost) no white.

The detection of the penalty area is achieved by analyzing the patterns of
lines and intersections that were recognized. Two long parallel lines were recog-
nized on the left of Fig. 3, which were in the expected distance from each other
for the two main lines of the penalty area. Patterns of T and L intersections
recognized are used to gather more information about the exact location of the
penalty area. The orientation of such a pair of intersections that is connected by
a line contains sufficient information to reconstruct the lines of the penalty area
that are intersecting. On the right, Fig. 3 illustrates this situation.

3.3 Camera Calibration

The camera calibration usually consists of two steps: the intrinsic calibration
to determine the focal length and the image center (we ignore distortions, be-
cause they are relatively small) and the extrinsic calibration to determine the
camera’s location in the robot. For the latter, we mainly focus on its relative

4 Technically, the side from which the penalty area is observed cannot be determined
when only detecting the two parallel lines, so the labeling is just a guess in this case.



Fig. 4: A (simulated) image of the points on field lines selected. The red and
orange crosses denote points selected for the upper and the lower camera respec-
tively.

orientation to the ground plane. We perform an intrinsic calibration for each
camera using the “GML C++ Camera Calibration Toolbox” [5] together with
a compatible chessboard. The extrinsic camera calibration uses the soccer field
as calibration pattern. Points on field lines are picked while the robot is looking
around, matched to the closest lines according to a model of the field, and the
parameters are then optimized using the Gauss-Newton method. The estimated
parameters are both cameras’ and the body’s roll and pitch offsets, as well as the
robot’s position on the field to compensate for small deviations from the robot’s
pre-defined calibration position.

The points on field lines can be picked manually or automatically. The main
improvements were performed in the automatic selection of points, which makes
the automatic approach feasible now. The points on field lines are detected using
B-Human’s normal vision system [4]. However, to ensure a uniform density of
points in all directions and distances, new points are only accepted if they are
farther away than 30 cm from points that were already picked before, as shown
in Fig. 4. In addition, they are only recorded when the head is not moving to
avoid errors resulting from time differences between joint angle measurements
and image taking and the rolling shutter effect. Although these effects are usu-
ally compensated for by B-Human’s vision system, there is a certain amount of
guessing involved, which should be avoided when calibrating the cameras.

Although the goal is to perform a fully automatic calibration process, it is
always possible that erroneous points are detected, e. g. because it is impossible
to get access to a completely empty field during the setup of an official compe-
tition, during which other objects, such as cables, are on the field and can be
mistaken for field lines. In addition, some field lines further away might have too
little contrast for our vision system to detect them. Therefore, the calibration
module still offers the option to manually add and remove a few points.

Overall, the time it takes to calibrate the extrinsic camera parameters has
significantly been improved.



4 Motion

4.1 Integration of Arm Motions

B-Human is one of the few teams that actively uses the robot’s arms in soccer
games, not only when getting up and when the goalkeeper dives. We use the
arms as sensors to detect the contact with other robots. We also use them to
hinder other robots from overtaking our robots, while, in contrast, our robots
take them away when they are overtaking another robot. They also take an arm
out of the way when they plan to steal the ball from an opponent by walking
along in front of it or if the arm is potentially blocking the goalkeeper’s view at
the ball. As we use the arms more and more, they are now seen as a third kind
of motion unit in addition to the body with its legs and the head. In fact, the
two arms can be moved independently from each other, so they are actually two
separate motion units.

The robot can operate in different motion modes, some of which need all
motion units working together (e. g. getting up), while in others (e. g. walking),
they can be controlled separately. And of course, there are transitions between
these different motion modes that have to be executed smoothly to avoid unsta-
bilizing the robot. In addition, although during walking the arms, the head, and
the body can be controlled relatively independent from each other, the walk-
ing engine still needs to know which motions the other motion modules intend
to perform to properly balance. The walking engine also prefers to control the
arms during walking to let them swing slightly. Therefore, the walking engine is
in control of the arms if they are not executing another motion.

As in the past, managing the different motion modes is split into three phases.
In the first one, it is decided which motion modules are currently active and, in
case of a transition between different motion modes, how strongly their output
influences the actual joint angles that are set. In the second phase, all motion
modules that are currently active compute their output joint angles. In a third
phase, these joint angles are mixed together based on the weightings that were
defined in the first phase.

4.2 Load Balancing

RoboCup games can take quite a while, in particular the play-offs, in which the
clock is stopped when not in playing state. During such a game, the robots walk
a lot, but they also stand a lot, e. g. when waiting for other robots to reach
their kick-off positions in the ready state. This has two negative effects: On the
one hand, there is a high power consumption, which can become critical during
long games with weak rechargeable batteries. On the other hand, the joints are
getting very hot5, which results in weaker and less precise joint movements, and
ultimately in the robots falling down more often.

5 The joint temperature is an estimation done by NAO’s operating system NAOqi and
not an actual measurement.



Fig. 5: The temperature in ◦C of the hottest joint of B-Human’s robot “Kripke”
in the second half of the final of the RoboCup German Open 2015. The robot
also played the whole first half before. The time is shown as the number of vision
frames until the end of the half, i. e. in 1

60 secs. The vertical blue lines mark the
begin and end of phases in which the robot was standing.

We address this problem from two different angles. The team behavior is now
more optimized to avoid that robots have to continuously walk around on the
field. Instead, they try to stand still in more situations. But even when standing,
the heat of the joints can quickly go up if the weight is not evenly distributed
over both legs. Therefore, while standing, our robots are continuously detecting
the cumulative electrical currents for each leg over a short amount of time and
then lean the torso over towards the side the leg which had the smaller power
consumption so far. Thereby, the robots are able to distribute the load more
equally and to keep the temperature from increasing while the robot is standing.

As can be seen in Fig. 5, on a robot playing during the final of the RoboCup
German Open 2015, the increase in joint temperature was always slowed down
when the robot was standing.

5 Infrastructure

5.1 B-Human Framework

We replaced our own mathematics library by Eigen [2] throughout the whole B-
Human system. We kept some special methods that Eigen does not offer and in-
tegrated them through Eigen extensions. Since Eigen adds a considerable source
code footprint to compilation, we use precompiled headers in our build system
for all projects that include Eigen.

Our C-based Agent Behavior Specification Language (CABSL) [3] now uses
the same syntax for specifying parameters as the streamable data types in our
system. Thereby, the actual parameters of each option can be recorded in log
files and they can also be shown in the behavior dialog (cf. Fig. 6). Please note
that the source code shown in Fig. 6 is still understood by a C++ compiler and
thereby by the editors of C++ IDEs.

To further enhance the usage of log files, we added the possibility for our
modules to annotate individual frames of a log file with important information.



Fig. 6: The behavior view shows the actual parameters, e. g. of the option Set-
HeadPanTilt (left: source, right: view). The display of values equaling default
parameters (specified in a second pair of parentheses) is suppressed. On the right
of the view, the number of seconds an option or state is active is shown.

This is, for example, information about a change of game state, the execution
of a kick, or other information that may help us to debug our code. Thereby,
when replaying the log file, we may consult a list of those annotations to see
whether specific events actually did happen during the game. In addition, if
an annotation was recorded, we are able to directly jump to the corresponding
frame of the log file to review the emergence and effects of the event without
having to search through the whole log file.

Log files now also contain additional information that allows replaying them
even after the specification of the data types recorded has changed (in most
cases). Based on the specification of each data type stored in a log file and its
current specification, the data is automatically translated during the replay if it
has changed. Missing fields keep their default values. Removed fields are ignored.

5.2 Team Communication Monitor

With the start of the Drop-in Player Competition in 2014, also a standard
communication protocol was introduced, i. e. the SPLStandardMessage, to al-
low robots of different teams to exchange information. While implementing the
standard protocol correctly is a necessity for the Drop-in Player Competition to
work, it is also an opportunity for teams to lower the amount of coding they
have to do to develop debugging tools, because when all teams use the same
communication protocol, the tools they wrote could also be shared more easily.
Therefore, B-Human developed the TeamCommunicationMonitor (TCM) as a
standard tool to monitor the network traffic during SPL games. This project is
partially funded by the RoboCup Federation.



Fig. 7: The display of the TeamCommunicationMonitor during the semifinals of
the RoboCup German Open 2015

The TCM visualizes all data currently sent by the robots, highlighting illegal
messages. Furthermore, it uses the knowledge about the contents of the SPL-
StandardMessages in order to visualize them in a 3-D view of the playing field.
This makes it also suitable for teams to debug their network code. Visualized
properties of robots are their position and orientation, their fallen and penalty
states (the latter is received from the GameController), where they last saw the
ball, and their player numbers. A screenshot of the TCM can be seen in Fig. 7.

In order to display all messages of robots sending packets, the TCM binds
sockets to all UDP ports that may be used by a team as their team number, i. e.
ports 10000 to 10099, and listens for any incoming packets. When a packet was
received, it is parsed as an SPLStandardMessage, marking all fields as invalid
that do not contain legal values according to the definition of the SPLStandard-
Message. As the TCM only listens and does not send anything, it may run on
multiple computers in the same network at once without any problems.

The TCM identifies robots using their IP address and assumes them to be
sending on the port that matches their team number. The team number sent
by the robots as part of the SPLStandardMessage is marked as invalid if it
does not match the port on which the message was received. For each robot,
the TCM holds an internal state containing the last received message as well as
the timestamps of the most recently received messages in order to calculate the
number of messages per second. A robot’s state is discarded if no message was
received from the robot for at least two seconds.

Displaying the 3-D view is done with OpenGL using the JOGL library[1]. The
visualization subsystem is also extensible so teams can write plug-ins containing
drawings that visualize data from the non-standardized part of their messages.
We have written a plugin to display perceptions of goals, obstacles, and whistles



as well as basic status information of the robots which our robots send via the
non-standardized message part.

Besides just visualizing received messages, the TCM also stores all received
messages both from robots and from the GameController in log files. These can
later be replayed, allowing teams and organizers to check the communication of
robots after the game is over.

The TCM is developed as part of the repository of the GameController
(https://github.com/bhuman/GameController), which is the standard referee
tool of the SPL and Humanoid leagues developed mostly by B-Human team
members since 2012, and it shares parts of its code.

After having been successfully used at the RoboCup German Open 2015 to
ensure valid messages from all teams during the Drop-in games, the TCM was
publicly released in early June and will be installed on the referee PC on each
SPL field at RoboCup 2015.

6 Summary

In this paper, we described a number of topics that we have implemented or
we have been working on since RoboCup 2014. Most prominently, we adapted
our existing goal detection to detecting white goals, which we successfully used
at the RoboCup German Open 2015. However, we are currently working on a
new approach, because there were still too many false positives. In addition, we
added other feature detectors to be less dependent on the detection of goals,
namely for penalty marks and penalty areas. We also improved existing parts
of our system such as the procedure for camera calibration, the management
of arm motions, dealing with joint heat, and the general infrastructure of our
system.

Besides our annual code releases, B-Human maintains the GameController,
which is now accompanied by the TeamCommunicationMonitor as another con-
tribution of our team to the development of the Standard Platform League.

References

1. Gothel, S., Santina, R., Koutsolampros, P.: JOGL - Java binding for the OpenGL
API. http://jogamp.org/jogl/www/

2. Guennebaud, G., Jacob, B., et al.: Eigen v3. http://eigen.tuxfamily.org (2010)
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