
B-Human 2019 – Complex Team Play
Under Natural Lighting Conditions

Thomas Röfer1,2, Tim Laue2,
Gerrit Felsch2, Arne Hasselbring2, Tim Haß2, Jan Oppermann2,

Philip Reichenberg2, and Nicole Schrader2

1 Deutsches Forschungszentrum für Künstliche Intelligenz, Cyber-Physical Systems,
Enrique-Schmidt-Str. 5, 28359 Bremen, Germany

2 Universität Bremen, Fachbereich 3 – Mathematik und Informatik,
Postfach 330 440, 28334 Bremen, Germany

thomas.roefer@dfki.de
{tlaue,s_uhei4h,arha,hasst,jan_opp,s_ksfo6n,nicole2}@uni-bremen.de

Abstract. In the RoboCup Standard Platform League 2019, the team
B-Human won the main competition and, together with Berlin United -
Nao-Team Humboldt, the Mixed Team Competition. For being successful
in such a competitive environment, many sophisticated solutions for a
variety of robotics tasks need to be found and integrated in a reliable and
efficient manner. In this paper, we focus on three aspects that we consider
as crucial for this year’s success and that have not been published before:
a system of neural networks for ball classification and position estimation,
a new framework for behavior specification along with its application
to passes and set plays, and a set of approaches for maintaining the
reliability of our robot team throughout a game.

1 Introduction

B-Human is a joint RoboCup team of the University of Bremen and the German
Research Center for Artificial Intelligence (DFKI) that continuously participates
in the Standard Platform League since 2009. We participated in ten RoboCup
German Open competitions, the RoboCup European Open 2016, and eleven
RoboCups and only lost six official games. As a result, we won all German
Open competitions except for one as well as the European Open competition,
and the RoboCups 2009, 2010, 2011, 2013, 2016 and 2017. This year, we won
both the main competition and, together with the team Berlin United – Nao
Team Humboldt as team B&B, the Mixed Team Competition. We also reached
second place in the technical challenges, i. e. the open research challenge and
the directional whistle challenge. In this paper, we present three major aspects
that we consider to have significantly contributed to this year’s success: the ball
detection, a new behavior structure, and the overall system reliability.

For some years, starting with the Outdoor Competition at RoboCup 2016, the
Standard Platform Leagues aims for natural lighting conditions on the playing
fields. This means possible changes of the ambient brightness during a game as



Fig. 1: Playing under natural lighting conditions during a practice match in Bre-
men (left) and at one of the outdoor fields at RoboCup 2019 (right)

well as the possibility of bright spots and dark shadows, caused by structures in
the environment or by the robots themselves, as depicted in Fig. 1. As an increas-
ing number of games under such conditions has been foreseeable (at RoboCup
2019, B-Human actually played most games close to huge windows, e. g. on the
field shown in the right part of Fig. 1), we decided to increase our development
efforts towards more flexible vision approaches and to test more under such dif-
ficult conditions. One currently very popular and successful approach for object
detection in such environments is the application of Convolutional Neural Net-
works (CNN). At the RoboCup Symposium 2019, we presented our CNN-based
robot detection [1], which has been used throughout the whole competition. In
this paper’s Section 2, our new CNN-based approach for ball classification is
presented. Both approaches make use of our new library for fast neural network
inference on NAO robots. Its implementation has been released as open-source [7]
and was also presented at the RoboCup Symposium [8].

In 2018 and 2019, multiple Standard Platform League rule changes directly
affected the implementation of the robots’ behavior by introducing new set plays
such as corner kicks and kick-ins. Their proper handling – when being in defense
as well as when being in offense – together with reasonable transitions to the
normal game behavior significantly increases the complexity of the overall be-
havior. As the previously used C-based Agent Behavior Specification Language
(CABSL) [6] together with libraries turned out to be too inflexible to be used
as the only means of specifying behaviors, a new behavior framework has been
developed. It is presented in Section 3, along with some of the innovations we
implemented this year.

One important aspect of robot football, which is perhaps underrated as it is
not a clearly defined field of research, is the overall team reliability. Whenever a
single robot breaks or becomes removed for a rule violation, the opponent team
immediately gains a numerical advantage for some time. In Section 4, we describe
multiple measures that we took to decrease the likelihood of such situations.
Furthermore, we present and discuss the corresponding game statistics recorded
at RoboCup 2019.



Fig. 2: System of neural networks for ball classification and position estimation.
The encoder is a CNN, the classifier and the position estimator are DNNs. The
architectures of the networks that are executed on the robot are shown in Table 1.

2 Ball Detection

Detecting a ball under natural lighting conditions means detecting it in very
different conditions, be it in bright light, in completely shadow, or only partly
covered by it. CNNs are currently a very popular approach for such problems.
We have been using them for ball classification on extracted 32x32 patches
since 2018 [4]. Instead of collecting more data and tuning hyperparameters, we
aim to improve this approach by integrating additional knowledge.

2.1 Encoding Relevant Knowledge

This year, we used CNNs to estimate the exact position of the ball in a given
patch. For this task, the labels of the existing dataset were extended by the po-
sition of the ball in the patch and the ball radius. If it is assumed a ball is always
round, it is possible to create ball segmentation images from those labels. An ex-
ample of such a segmentation image pair is shown in Fig. 3. A segmented image
contains much more knowledge than a simple classification label. Some of this
knowledge is relevant for ball classification and determining the ball position. If
an encoder-decoder architecture is successfully trained to predict this segmenta-
tion from the original ball patches, this knowledge is also contained somewhere
in the encoded features. Ideally, the features would comprise whether a ball is
present in the image, which specific pixels carry the information that a ball is
present, that a ball is round and connected even if a part is obscured, and the
position and size of the ball.

Features containing this information could both be used for ball classification
and position estimation. In the example shown in Fig. 3, this knowledge was
incorporated by the autoencoder. Despite the input showing only one half of a
ball, the segmented image shows a whole circle, where the ball would be. This



Table 1: Architectures of the three neural networks for ball detection

(a) Encoder

Layer Type Output Size
Input 32x32x1
Convolutional 32x32x8
Batch Normalization 32x32x8
ReLU Activation 32x32x8
Max Pooling 16x16x8
Convolutional 16x16x16
Batch Normalization 16x16x16
ReLU Activation 16x16x16
Max Pooling 8x8x16
Convolutional 8x8x16
Batch Normalization 8x8x16
ReLU Activation 8x8x16
Max Pooling 4x4x16
Convolutional 4x4x32
Batch Normalization 4x4x32
ReLU Activation 4x4x32
Max Pooling 2x2x32

(b) Ball Classifier

Layer Type Output Size
Input 2x2x32
Flatten 128
Dense + Batch Norm + ReLU 32
Dense + Batch Norm + ReLU 64
Dense + Batch Norm + ReLU 16
Dense + Batch Norm + Sigmoid 1

(c) Position Estimator

Layer Type Output Size
Input 2x2x32
Flatten 128
Dense + Batch Norm + ReLU 32
Dense + Batch Norm + ReLU 64
Dense + Batch Norm + ReLU 3

hints on the ability to detect partly obscured balls, which is very important
under natural lighting conditions.

Figure 2 shows the resulting system for ball classification and position esti-
mation. After feature extraction by the encoder, ball classification and position
estimation are done by two separate deep neural networks (DNN). The position
is only estimated if the image was classified as containing a ball.

2.2 Results

For evaluation purposes, the performance of the new network was compared to
the performance of the one we used during the German Open 2019. This was

Fig. 3: Training ball segmentation. The left image shows a training example, the
right image shows an exemplary inference result.



Fig. 4: Change in occurrence of different confidence levels by using the new net-
work instead of the old one that was used at the RoboCup German Open 2019.
The changes are in percent based on the detections of the old network.

done by running both ball detectors on data recorded during a test game in
front of a large window front and during the RoboCup 2019 final in Sydney.
For both games, the detections of the keeper and a field player from the first
half were used. The evaluation was completely automated by considering ball
detections as invalid that are not consistent with the team’s belief of the actual
ball position, which is a feature of the modeling we use in games. This method
does not identify all false positives, but it makes it possible to compare both
detectors on a relatively large dataset without manual labeling. We use two
different confidence levels of detected balls, seen and guessed, that differ in the
threshold that the classifier output must surpass.

As can be seen in Fig. 4, the new network detects overall more balls than the
old one. Specifically, the number of actual sightings has risen, while there was a
decrease in the number of times patches were classified as guessed. This effect
could also be achieved by lowering the thresholds for the guessed and seen labels.
Such an adjustment would also result in reduced precision. Figure 5 shows that
this is not the case. For a reliable ball detection it is also important to be able to
evaluate every frame provided by the NAOs cameras. Using our library for fast
neural network inference [7], computation of the shared features requires 192 µs
per evaluated patch on the NAO V6 and inference of the classifier 3.1 µs per
patch. This is fast enough to allow processing of the 60 frames per second the
NAO provides. Additional estimation of the ball position takes 2.5 µs per frame
and is therefore almost insignificant compared to encoding multiple patches.

3 Behavior

In the B-Human software, the behavior is the component that decides about
the actions to be taken with a given world model. Actions are then passed
on to the motion system, which generates the actual joint angles and sends



Fig. 5: Precision at different confidence levels of the new and the old network

them to the controllers. The behavior of B-Human has always been a key part
of our success, making use of the mostly correct and precise output from our
state estimation and the extensive features and stability of our motion system.
However, handling uncertainty is still crucial in order to achieve stable decisions.
We also often integrate ideas of other teams that we observe to be successful and
try to optimize them.

3.1 Defining a Framework

Decomposition and hierarchy are necessary to specify behaviors for complex
tasks such as playing soccer. From 2013 to 2017, B-Human used a single hi-
erarchy of CABSL options to specify the behavior. This approach had some
shortcomings: Adding or removing high level behaviors required modification of
other options. This also meant that an option would often be in a different place
than the conditions under which it would become active, which is not easy to
maintain. Furthermore, some behaviors are simply not suitable to be modeled
with finite state machines, need large calculations, or keep additional state. Some
functionality was therefore outsourced to so-called libraries, which also spread
closely related code across different places.

In 2018, we already started to move away from a single hierarchy of CABSL
options (cf. [4, p. 34]). The main problem with the behavior options in 2018
was that they could not be passed any parameters, making them useless for
behaviors such as walking to a point or doing a specific kick. On the other hand,
this anonymity was a desired property to achieve exchangeability of behavior
components. We realized that it might not be a good idea to try to fit all behavior
levels in the same formalization, but instead split the behavior into two layers:
one that would decide what the robot should do, where options could easily be
added or removed, and another one that would realize how the robot fulfills this
request.

We call our new framework the Skills and Cards system. Skills are sepa-
rated into an interface declaration and an implementation, where the interface



defines the signature of a skill. This allows us to develop multiple methods for
the same task, just as representations can be provided by different modules in
the B-Human software (cf. [3]). Skills can call other skills and directly set out-
put representations of the behavior, e. g. the MotionRequest. Cards, on the other
hand, define a behavior together with the conditions under which they may run.
They cannot have parameters and thus do not need separate interface declara-
tions. Cards are organized in decks, which are priority-ordered lists. A so-called
dealer can choose from them, currently selecting the first runnable card, where
runnability is determined based on pre- and postconditions that a card specifies.
Cards can contain dealers themselves, thereby forming hierarchies of cards.

The following example illustrates the distinction between skills and cards:
The GoToBallAndKick skill takes a kick pose and a kick type as parameters.
It does not decide whether and where to kick. In contrast, the KickAtGoalCard
evaluates whether it is possible to do so and then calls the GoToBallAndKick skill
with the appropriate parameters. Of course, the GoToBallAndKick skill is also
called from other cards, such as passing to a teammate.

3.2 Passing into Space

For this year, we abandoned the idea of taking passes using specialized motions.
Instead of kicking the ball directly at a teammate, we found that it would be
much better to pass into space, acknowledging the inaccuracy of our kicks over
long ranges. Furthermore, when passing upfield, the ball should end up between
the receiving teammate and the opponent’s goal because this reduces the time
the receiver needs to walk around the ball after reaching it. Therefore, robots
positioning for receiving a pass walk to the flanks of the opponent’s half, oriented
such that the ball can still be seen, but with a tendency towards the center of
the field. This way, the passing robot can aim at an area next to its teammate,
including a safety margin to minimize the probability that the ball actually ends
up behind the receiver.

A particular instance of this kind of passing is the kick-off. While we are
not the first team to implement a passing kick-off (the concrete variant with
two robots entering the opponent’s half is inspired by the team rUNSWift), we
seem to be the only team that repeatably executes it with success. The kick-
off occurred 10 times during the competition, and while a direct goal after two
ball contacts could be scored only once, in all cases our robot had the second
ball contact after the kick-off far inside the opponent’s half. In some cases, only
the opponent’s goalkeeper could prevent an immediate goal, which is acceptable
and still a strong opening. This also means that we are ready for potential rule
changes which require two different robots touch the ball before a goal can be
scored.

3.3 Taking Advantage of Set Plays

One of this year’s changes in the SPL rule book [2] was the expansion of set
plays with the introduction of kick-ins and corner kicks. If not handled properly,



Fig. 6: Offensive and defensive free kicks. The left drawing shows the candidate
kick direction intervals (green) and blocked sectors (red) during an offensive
corner kick. The right drawing shows a defensive wall building scene.

these situations could either allow the opponent to easily score a goal or deny a
crucial goal in a game. On the highest level, our system distinguishes between
own (or offensive) and opponent (or defensive) free kicks. Both of them have
their own deck, although they share most cards with the normal play deck.

The first card in the own free kick deck is a direct shot at the goal, which is
the same that is used during normal play and executed as soon as possible. If
this is not the case (e. g. due to obstacles blocking the goal or being too far from
the goal), different variants exist for the different types of set plays, i. e. goal free
kick, corner kick, kick-in and pushing free kick, that try to move the ball closer
to the goal and ideally close to a teammate. For example, a striker executing the
CornerKickToOwnRobotCard calculates all angular intervals around the ball that
point inside the field of play and are not blocked by obstacles (regardless of their
team affiliation), as shown in Fig. 6. Up to two of them are chosen, e. g. they
must have a minimum width, and broadcast to its teammates. Simultaneously,
up to two supporting robots can execute the WaitForCornerBallCard. They listen
to the potential kick directions that the striker sends and position themselves
such that the expected ball position after the pass is between them and the goal,
according to the passing paradigm described above. As soon as the selected kick
direction is stable or 15 seconds have passed, the kick is executed. Stability is
determined by checking whether the candidate direction intervals calculated each
frame intersect by a certain amount in successive frames for some time.

The behavior during an opponent’s free kick, on the other hand, is always
aimed at preventing a goal and does so in different ways depending on the pos-
sibilities available. All ball-playing cards are removed from this deck, however,
there are three special cards in addition to the usual supporting behavior during
normal play. Most importantly, one robot tries to form a wall between the own



goal and the ball (cf. Fig. 6). The position is chosen just outside the clear area
around the ball in an angle such that the own goal is covered as wide as possi-
ble. Keeping a robot close to the ball has the additional purpose to regain ball
possession quickly when the free kick is not executed properly. A special case
is when the ball is in one of the own corners, such as in an opponent’s corner
kick. In this case, the robot does not stand between the ball and its own goal
but walks to a position close to the sideline. The goal is then still covered by the
defenders and the goalkeeper. If a free kick takes place directly in front of the
own goal such that a wall between the ball and the own goal is no longer possible,
an attempt is made to delay or prevent the opponent from taking the free kick.
This is done by walking in front of the opponent which is nearest to the ball.
This forces the opponent to walk around the blocking robot (which continuously
adjusts its position) or even makes it lose track of the ball. As third option,
if there are five robots or more in the defending team, one of them considers
marking an opponent. Candidates are opponents that are closer to the own goal
than the ball and probably not taking the free kick. The goal is to make the
robot unattractive as pass receiver for the opponent or to gain ball possession if
a pass is done nevertheless.

Finally, it is important to keep track of the ball during free kicks. At least
during goal free kicks and corner kicks, the ball is replaced in a different location
than it went out, which may be outside the field of view of all robots. The
robots, however, know the type of free kick from the referee computer message.
Therefore, they can specifically search the positions where the ball should have
been put. Although we make a guess about the side (i. e. left or right) based on
the observed ball trajectory, both possibilities are investigated with two robots,
if available. For kick-ins, the ball is searched for at the position where it went
out, if that has been observed.

4 Reliability

In human soccer, it is considered a huge disadvantage to play with fewer players
than the opponent, usually due to a penalty. Unless the level of play is very
different between the two opposing teams, this assumption is also valid for robot
soccer. Therefore, we try to keep our robots on the field as long as possible, i. e.
to avoid receiving penalties as much as possible. In the 2019 SPL Champions
Cup competition, we generally succeeded in that goal—with one exception.

4.1 Obeying the Rules

Throughout the competition, our robots received no penalties for leaving the
field, illegal defender, illegal positioning, and illegal motion in set. The absence of
the first three of these penalties is a result to our reliable self-localization [5], the
last one originates from our robust whistle detection [3, p. 86] that was improved
this year. In fact, the only penalties the robots received were four pushing calls
throughout the competition, a result of our good obstacle detection [1] and



careful behavior near opponent players. No team received less. The only problem
that we had this year was that the operating system on the NAOs sometimes
terminated our software as a response to terminal output, which resulted in 15
penalties for inactive players. It took us the first two games in the Champions
Cup and one in the Mixed Team Competition to identify and solve this problem.

4.2 Avoiding Hardware Damage

Another reason for a low count in penalties is the avoidance of hardware damage.
In general, the new version 6 of the NAO helped a lot with this, because it
appears to be a lot more robust than its predecessors. In addition, our robots
execute protective measures when they fall, i. e. they kneel down when falling
backwards, turn the head straight and pitch it away from the fall direction, and
lower the joint stiffness before impact. They determine over which edge of the
support polygon they might fall and use an Unscented Kalman Filter to preview
whether they actually will. This allows them to start the safety measures very
early. An indicator that our fall protection works better than others is the cover
of the loudspeakers in the head of the NAO V6. It is a little bit loose and it pops
off quite easily when a robot falls, as could be observed during many games.
However, our robots never lost this part, most likely due to the lower force with
which the heads hit the ground.

4.3 Getting Up

In previous years, our robots had problems with getting up on the artificial grass
the field is made of. After a robot fell, it tried different getup motions in a row,
from fast and risky to slow and safe, until it could actually get up. This resulted
in many failed attempts and sometimes also in fallen robot penalties. In addition,
the get up motions had to be manually tuned for the carpet at each competition,
sometimes even for individual robots.

The main problem with robustly getting up is that NAO’s joints sometimes
do not follow the commands they were given or at least not as fast as they
should. This changes the overall trajectory that the body follows during the get
up motion, which often results in the robot falling over again. In particular,
this can happen when the NAO has to get its legs together from a wide crouch,
which requires a lot of force. The key idea in our current approach is to observe
whether each joint of the robot actually follows the commands it was given. If
it lags too much behind, the error is distributed over other joints according to
predefined weights. Although this cannot produce the same overall trajectory
as the original motion, it takes away the load from the lagging joint, which can
then catch up more easily to its target angles. As a result, we now only have a
single get up motion for each fall direction of the robot, i. e. front and back, with
no adjustments needed. All of our robots, even the old ones, get up in their first
attempt in more than 96% of the cases if there are no obstacles in the vicinity
that could prevent this.



Table 2: Average number of penalties per game (PPG) and average number of
robots in play (RIP, also for 1st and 2nd half) for the three SPL competitions at
RoboCup 2019

(a) Champions Cup

Team PPG RIP 1st 2nd

B-Human 2.7 4.81 4.65 4.98
Nao Devils Dortmund 4.0 4.78 4.76 4.79
TJArk 4.7 4.77 4.81 4.74
Berlin United 4.8 4.77 4.71 4.82
Nao-Team HTWK 5.1 4.67 4.81 4.50
HULKs 3.3 4.65 4.79 4.51
NomadZ 9.6 4.57 4.67 4.46
rUNSWift 9.9 4.50 4.58 4.42
Bembelbots 10.5 4.42 4.35 4.49
SPQR Team 8.9 4.38 4.38 4.39
Dutch Nao Team 12.4 4.20 4.18 4.21
UT Austin Villa 15.3 3.90 4.16 3.60
Average 7.6 4.53 4.57 4.49

(b) Challenge Shield

Team PPG RIP 1st 2nd

Camellia Dragons 10.5 4.44 4.66 4.22
SABANA Herons 10.5 4.44 4.50 4.37
NTU RoboPAL 9.9 4.36 4.51 4.21
Starkit 10.6 4.22 4.28 4.16
MiPal 16.2 4.07 4.04 4.10
Naova ETS 14.8 3.96 4.01 3.90
UPennalizers 20.3 2.85 3.16 2.57
RoboEireann 23.3 2.80 2.89 2.72
Average 14.5 3.89 4.01 3.78

(c) Mixed Team Competition

Team PPG RIP 1st 2nd

B&B 7.0 5.69 5.63 5.75
Team Team 8.0 5.56 5.70 5.42
Devil SMASH 8.0 5.52 5.56 5.48
SwiftArk 9.3 5.49 5.47 5.51
SPQR-Starkit 16.8 4.60 4.41 4.82
Average 9.8 5.37 5.35 5.39

4.4 Results

Table 2 shows the average penalties per game and the average number of robots
that were on the field during actual play. It shows that B-Human was the team
with the least penalties and with the most robots on the field. Also in the Mixed
Team Competition, where teams play with six instead of five robots, B&B, our
joint team with Berlin United, also was the best one in this regard. As can be
seen, there is a general tendency to have fewer robots on the field in the second
half, in particular in the Challenge Shield. This is mainly due to the incremental
nature of the penalty time, i. e. according to the rule book, each penalized robot
has to stay 10 second longer off the field than the previous one. However, some
teams also start taking robots off the field to save them for the next game, when
the current game has basically already been decided in their favor. This is, e. g.,
the case for the team HULKs, which had fewer robots on the field in the second
half, although they have the second-lowest penalty count per game.

5 Conclusion and Future Work

In this paper, we described three – out of many – aspects that contributed to
our success in the RoboCup 2019 competitions. While the overall reliability of



our robots is already quite close to the aim of having always the full number
of robots on the field, without any penalties or fallen robots, the vision system
as well as the team behavior, although they already provided very good results,
can still be considered as work in progress.

Due to the much higher computing power of the NAO v6 robots, we are
now able to run multiple deep neural networks for ball detection as well as for
robot detection in parallel. However, these components are still embedded in our
old, partially lighting-dependent vision system that still requires a few manual
calibration steps before each game. Thus, currently ongoing research deals with
the replacement of these parts, for instance by applying neural-network-based
semantic segmentation.

This year’s competitions showed that our new ability of playing passes af-
ter set plays as well as during the normal course of the game is definitely an
advantage. However, so far, we only developed few variants for the respective
situations, which is why our robots did not find a proper solution in some situa-
tions. As our new behavior framework allows an easy integration of new variants
for passes, we are looking forward to an even more sophisticated team play at
RoboCup 2020.

References

1. Poppinga, B., Laue, T.: JET-Net: Real-time object detection for mobile robots. In:
RoboCup 2019: Robot World Cup XXIII. Springer (to appear)

2. RoboCup Technical Committee: RoboCup Standard Platform League (NAO)
rule book (2019), only available online: https://spl.robocup.org/wp-content/
uploads/downloads/Rules2019.pdf

3. Röfer, T., Laue, T., Bülter, Y., Krause, D., Kuball, J., Mühlenbrock, A., Poppinga,
B., Prinzler, M., Post, L., Roehrig, E., Schröder, R., Thielke, F.: B-Human team
report and code release 2017 (2017), only available online: http://www.b-human.
de/downloads/publications/2017/coderelease2017.pdf

4. Röfer, T., Laue, T., Hasselbring, A., Heyen, J., Poppinga, B., Reichenberg, P.,
Roehrig, E., Thielke, F.: B-Human team report and code release 2018 (2018),
only available online: http://www.b-human.de/downloads/publications/2018/
CodeRelease2018.pdf

5. Röfer, T., Laue, T., Richter-Klug, J.: B-Human 2016 – Robust approaches for per-
ception and state estimation under more natural conditions. In: Behnke, S., Sheh,
R., Sarıel, S., Lee, D.D. (eds.) RoboCup 2016: Robot World Cup XX. Lecture Notes
in Artificial Intelligence, vol. 9776, pp. 503 – 514. Springer (2017)

6. Röfer, T.: CABSL – C-based agent behavior specification language. In: RoboCup
2017: Robot World Cup XXI. Lecture Notes in Artificial Intelligence, vol. 11175,
pp. 135 – 142. Springer (2018)

7. Thielke, F., Hasselbring, A.: CompiledNN: A JIT compiler for neural network in-
ference (2019), https://github.com/bhuman/CompiledNN

8. Thielke, F., Hasselbring, A.: A JIT compiler for neural network inference. In:
RoboCup 2019: Robot World Cup XXIII. Springer (to appear)

https://spl.robocup.org/wp-content/uploads/downloads/Rules2019.pdf
http://www.b-human.de/downloads/publications/2017/coderelease2017.pdf
http://www.b-human.de/downloads/publications/2018/CodeRelease2018.pdf
https://github.com/bhuman/CompiledNN

