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Abstract. In 2021, our team B-Human participated in two events in
the RoboCup Standard Platform League, namely the German Open Re-
placement Event and the actual RoboCup. We won both competitions.
In both events, the biggest scientific challenge was to be able to play soc-
cer on foreign robots in remote locations with the human team members
neither being on site nor having direct access to these robots. We present
our approach to a robot soccer system that only requires a fully auto-
matic pre-game extrinsic camera calibration, but otherwise works out
of the box. This paper focuses on the automatic calibration and some
aspects of our lighting-independent computer vision system.

1 Introduction

RoboCup is a competition. Thus, teams tune their systems for maximum per-
formance regarding speed and precision. Although overall success depends on
sophisticated algorithms, the actual performance often hinges on a multitude
of suitable parameters. For this reason, during a RoboCup event, one can con-
stantly observe participants on the fields, adapting their software for particular
robots and the current environment. In general, the following robot software
aspects are affected the most:

Vision System: Many efficient robot vision approaches strongly depend on
the current lighting conditions and require a proper preset. However, when
playing next to huge windows, the interplay of sun and clouds might change
these conditions quite quickly and – combined with a fixed vision parameter
preset – cause effects such as overexposure, cast shadows, and changes of the
color saturation.

Camera Parameters: For a precise projection of objects detected in an image
to robot-relative positions on the field plane, a calibration of each individ-
ual robot’s cameras is necessary. In general, the production tolerance is so
significant that without any calibration, reliable self-localization and object
tracking are not possible.



Joints and Motions: Different robots are in different states of wear. Thus, two
robots of the same model often cannot carry out the same motion pattern,
such as walking or kicking, in the same way. Furthermore, the structure and
state of the field surface is not the same on every field and might strongly
affect the reliability of any motion.

In 2021, no regular RoboCup competitions were held at any central place.
Instead, most leagues decided to hold virtual and decentralized alternative com-
petitions [8,10]. In the Standard Platform League, two competitions were held:
the German Open Replacement Event (GORE) as well as the RoboCup 2021
Virtual. As all teams use the same robot platform, which is currently the NAO
by SoftBank Robotics, for both events a unique setup was possible: Full games
as well as different technical challenges were held on real robots but inside labs
and on robots that were not directly accessible by the teams playing. Software
and (sometimes) robots traveled, but people did not.

Such kind of remote setup poses significant challenges to the aforementioned
tuning aspects as time and possibilities for interaction are extremely limited.
In this paper, we describe our methods for autonomous calibration and lighting
independent vision that we applied successfully at RoboCup 2021 as well as at
the German Open Replacement Event. The third aspect – robust motion – has
been addressed in a separate paper [5].

The remainder of this paper is organized as follows: Section 2 describes the
competitions we participated in, along with their particular challenges. After-
wards, our approach for autonomous calibration is presented in Section 3. Our
developments that allow calibration-free robot vision are described in Section 4
and Section 5 respectively. Finally, our results in 2021 are summarized in Sec-
tion 6.

2 Challenges of the 2021 Competitions

As mentioned before, in 2021, the Standard Platform League held two competi-
tions that required teams to run their software on robots that were not their own
and to let them play on pitches to which the teams did not have direct access
to.

As the annual RoboCup German Open was canceled in 2021, the Standard
Platform League community organized its own competition, which was called
German Open Replacement Event (GORE). The event was held in May 2021 at
two places – Technical University of Dortmund and University of Bremen – in
parallel. The participating teams sent some of their robots to one of the places to
form two robot pools that consisted of 16 robots each. No participants traveled
with their robots. To hold full 5 vs 5 games, two hours before each game, every
playing team was assigned five random robots from a pool. These could have
been some of the own robots, but not necessarily so. Within these two hour
time slots, a team had to deploy its software, configure each robot, and perform
necessary calibrations and tests. This process had to be fully remote, the actual



handling of the robot hardware was executed by local assistants. Given such a
short period of time and the large number of robots, any automatisms as well as
calibration-free implementations are highly beneficial. A detailed description of
the GORE is given by Laue et al. [2]. The applied rules, which are mainly based
on the standard game rules, featuring some extensions for hardware safety, are
described in the GORE rule book [7].

RoboCup 2021 was a virtual event, too. The Standard Platform League com-
petition consisted of four separate challenges, the results of which were combined
to determine an overall winner. Two of these challenges were fully local: the Pass-
ing Challenge and the Obstacle Avoidance Challenge. Teams performed these
challenges on their own robots in their own labs and streamed their attempts.
As such a setting allows full control over the robots and their environment,
automatic calibration as robust algorithms are less important and can be com-
pensated by hand tuning details. However, the remaining two challenges, namely
the Autonomous Calibration Challenge and the 1vs1 Challenge, were held re-
motely and posed challenges similar to those of the GORE. In both cases, the
robot software was run on foreign robots at places that were not accessible by the
participants. In the Autonomous Calibration Challenge, a robot calibration had
to be performed fully autonomously. Subsequently, the robot had to navigate to
multiple targets and detect two balls on the pitch, in all cases as precise and
fast as possible, making the quality of the calibration a decisive factor. The 1vs1
Challenge was a minimalistic version of robot soccer, played with one robot per
team. For this challenge, the calibration had to be done within 20 minutes and
allowed fully automatic procedures as well as a semi-automatic execution with
the help of a local volunteer. A detailed description of all rules is given in the
official rule book [9].

3 Autonomous Calibration

One standard step in robot vision is the transformation of a detected object’s
image coordinates into the robot’s world coordinate system. To perform this
step, information about the robot’s kinematics, the camera’s position and ori-
entation with respect to the robot body, as well as certain camera parameters,
such as opening angles and the optical center, are needed. Even after careful
industrial-scale production, the deviations from the original specifications are
often high enough to cause huge transformation errors. Thus, in general, a cam-
era calibration is unavoidable for robust and precise robot perception.

We model the deviation of the camera poses from their specified values by six
parameters: a roll and pitch offset in the body and for each of the two cameras.
Translational errors are too insignificant to the projection error and the yaw
angles cannot be calibrated due to lack of a global reference.

An important feature of the calibration is that it works without exact knowl-
edge of the robot’s pose. The parameters are derived from the known relative
angles (either parallel or orthogonal) and distances between lines on the field.
Specifically, we use the view of the goal area from the side, which gives two



Fig. 1: The robot’s view during the calibration, taken during our attempt in
Hamburg.

right angles and one distance between two lines (see Fig. 1). The goal area is
observed with three different head pan angles with each of the two cameras (this
is necessary to distribute the error among the body and camera offsets), which
gives 18 samples for 6 parameters in a least-squares optimization. To identify
the goal area in the image without needing the yet uncalibrated projection to
the field, we search for a short line that connects two long lines in the image, as
this relation is true for the goal area only. For improved accuracy, the lines that
are returned by our usual detection algorithm are refined by a Hough transform
on a Sobel grayscale image before calculating the cost function.

In the autonomous mode required for RoboCup 2021, the robot is initially
placed at one of two known positions at the side of the field. The self-localization
is running using percepts that are projected using the yet uncalibrated camera
pose, but no sensor resetting is performed in order to prevent the robot’s pose
estimate from jumping due to incorrectly perceived landmarks. The robot walks
to a position from which the short line of the goal area can be observed well. It
adjusts its head angles and its position if the necessary features are not detected
within some time. After each successfully recorded sample, the robot also turns
its head and body to observe the goal area from another angle. After all samples
have been collected, the optimization process is started. We use a Gauss-Newton
optimizer, but since the cost function is quite complex, the Jacobian is approxi-
mated by the numerical gradients. The optimization is done once the parameter
change is sufficiently low for a number of optimization steps. Figure 2 shows the
results of an automatic calibration performed at RoboCup 2021.

4 Preliminary Work on Deep Learning-based Robot
Vision

Due to the increasing complexity of the Standard Platform League’s environment
– removing color-coded items and enforcing setups with as much natural light-



(a) Projected field lines before calibration (b) Projected field lines after calibration

Fig. 2: Results of the autonomous camera calibration on a robot of the HULKs
team during RoboCup 2021. Inside the fields of view of the two cameras, the
projected field lines are shown in red, the projected field border in orange.

ing as possible – we replaced most algorithmic robot vision solutions by Deep
Learning based approaches for several years now, as they have been proven to
provide the necessary robustness to cope with this level of complexity.

Since 2017, the ball detection is based on the classification of previously
determined image patches. The most recent version is described in our 2019
winner paper [11]. It uses an encoder-decoder architecture to determine the pixels
belonging to a ball and includes an additional position estimation network to
infer the exact ball center within a given patch.

In 2019, we presented and started using JET-Net [4], which is able to perform
real-time robot detection. Given a full image and no external preprocessing steps,
it is able to determine robot bounding boxes along with an estimate of the
distance to a detected robot.

One important step in our vision pipeline is the computation of the field
border to exclude most parts outside the field, which are not specified and thus
contain random things, from further image processing steps. In the past, the
detection of the field border required the calibration of the field’s green within
the color space. Since this year, we do not require this calibration anymore,
as points of the field border are computed by another neural network. Along
with their position, an uncertainty of their position is inferred too. This allows



a more reliable matching of the field’s edges. A full description of this approach
is published by Hasselbring and Baude [1].

For fast inference of neural networks on our NAO robots, we use our own
implementation, which is available as open source and is described in detail by
Thielke and Hasselbring [14].

5 Lighting-independent Field Line Detection

As described in the previous section, multiple important elements of a robot
soccer game can already be detected by neural networks. However, for the field
lines as well as for the computation of image patches that are candidates for
containing the ball, this is not possible yet. These objects can be quite small or
thin in an image and – in case of lines – still span over the whole width of an
image. This would require to enter a high resolution image into a neural network
and to apply more flexible approaches such as semantic segmentation. As the
current computing power of the NAO robot is probably not sufficient for such a
task, we developed a lighting-independent algorithmic solution.

The field line detection relies on a grid of horizontal and vertical scan lines
along which the image is segmented into the classes green, white, and a generic
class for everything else. In the computation of this segmentation, many thresh-
olding parameters are needed. In past years, these had to be calibrated by hand
before the start of the game. Instead, we now calculate all needed parameters
per image, allowing the perception to adapt to lighting changes during the game
as well as reducing calibration overhead.

5.1 Color-Segmented Scan Lines

Scan lines are a means to analyze only a part of the image while retaining as much
useful information as possible. This is especially important now that our color
segmentation approach takes significantly more execution time. That makes it
impossible to apply the color segmentation to the whole image, so instead we
use it only on the scan lines.

A scan line is simply a vertical or horizontal line of pixels in the image, so each
scan line position is signified by a single x- or y-coordinate in the image plane.
An adaptive grid defines the scan line positions depending on the robot’s view
angle. We also cut off the scan lines at the field boundary that was computed
beforehand.

The color segmentation of the scan lines is done in four steps:

1. Split each scan line into homogeneous regions
2. Classify regions as field
3. Classify regions as white
4. Perform cleanup operations

Currently, this is done for the vertical and horizontal scan lines independently
of each other.



(a) Region transition points of vertical
scan lines

(b) Region transition points of horizontal
scan lines

Fig. 3: The pink dots indicate the positions where two scan line regions are
separated.

For the first step, we draw samples in regular intervals on each scan line.
For each sample point, we apply a Gaussian blur filter on the luminance to
smooth out noise. When two consecutive sample points’ smoothed luminances
differ significantly, a Sobel filter is applied to the interval in between. The highest
Sobel value then signifies the exact position that separates two regions of the
scan line. In Figure 3, the resulting region transition points are marked with
pink dots. Each region gets a representative YHS2 (see [13, p. 60]) color value
by averaging over its pixels.

The field often appears in the image in form of rather big homogeneous
patches that are within a certain color range. In order to use this characteris-
tic, we unite neighboring regions with similar YHS2 color values. This is done
efficiently using a union-find disjointed tree data structure. All united regions
that span enough pixels and are in the expected color range of the field become
classified as field and allow to determine the exact color range the field has in
this image. Afterwards, all remaining regions are also classified as field, if they
are within the ascertained field color range.

The classification of white regions utilizes simple thresholding techniques.
The thresholds depend on the previously established field color and the approx-
imated average luminance and saturation of the image. The results can be seen
in Figure 4.

Finally, neighboring regions on the same scan line, which have the same clas-
sification, become united into one region. We also noticed that this classification
procedure sometimes leaves small gaps in between a field region and a white
region. Because this impairs the line detection, we fill small gaps between a field
and a white region by dividing them up equally into the neighboring regions, as
can be seen in Figure 5.



(a) Vertical color segmented scan lines (b) Horizontal color segmented scan lines

Fig. 4: The color segmented scan lines. For better contrast, the regions classified
as white are drawn in red.

5.2 Line Detection

The perception of field lines relies mostly on the scan line regions. In order
to find horizontal lines in the image, adjacent white vertical regions that are
not within a perceived obstacle [13, pp. 71-74] are combined to line segments.
Correspondingly, vertical line segments are constructed from white horizontal
regions. These line segments and the center points of their regions, called line
spots, are then projected onto the field. Using linear regression of the line spots,
the line segments are then merged together and extended to larger line percepts.
During this step, line segments are only merged together if at least a given ratio
of the resulting line consists of white pixels in the image. Figure 6 shows the
process of finding lines and the center circle in the camera image.

(a) Small wrongly classified regions at the
transitions between field and line

(b) Transition between field and line with
filled in gaps

Fig. 5: Filling in of small gaps between a field and a white region. Regions clas-
sified as white are shown in red.



(a) Center points of the line spots. The
ones found on vertical scan lines are
marked in blue and finds on the horizontal
scan lines are marked in red.

(b) The line segments built up from the
line spots

(c) Circle candidate with points on inner
and outer edge marked in yellow and cyan

(d) The final perception of field lines and
the center circle

Fig. 6: The process of finding field lines

We don’t compute the color segmentation for the whole image any more.
Instead, the pixels on the presumed line are compared to their surroundings
in order to find out if the line is actually white. In regular intervals, we draw
samples from a presumed line, compute two positions above and below the line
for each sample and then use these for individual white tests of each pair of
sample and comparison position.

To test the hypothesis that the sample point on a supposed line segment
is white on green, we expect it to have a considerably higher luminance paired
with lower saturation in relation to the comparison points. Additionally, we then
test if the sample point satisfies generic thresholds for luminosity and saturation
and if the comparison points are in the field color hue range. That effectively
results in testing whether the line is white and embedded in green surroundings.
Figure 7 shows the positions of the samples and their comparison positions.



Fig. 7: Sample points (blue) and their corresponding comparison points (orange)
for the white test of line segments.

6 Results

At the GORE, we played three games against the other strongest teams in the
competition. Since we provided one of the two competition sites used, all our
games took place in the other one, i. e. in Dortmund. We won our games 10:0,
8:0, and 10:0. Thereby, we scored 37% of all goals in this competition of seven
teams and achieved the first place. Detailed results of the GORE are provided
at the GORE website [3].

At the RoboCup, we won three of the four challenges and became the runner-
up in the fourth challenge. In the Obstacle Avoidance Challenge, which required
a robot to dribble around obstacles and to score a goal as quickly as possible, two
of our three attempts were the fastest ones of all attempts of the fourteen teams
that participated in that challenge. In the Passing Challenge, our robots played
more passes in all of their three attempts than any other team. In particular,
our best attempt with 27 passes in five minutes achieved as many passes as all
the other seven teams in all of their attempts combined.

In the Automatic Calibration Challenge, different categories were judged,
two time-based and five precision-based. 14 out of 15 times, we achieved the first
place in precision-based categories. However, we often only reached the second
place in time-based categories, because some teams skipped the calibration phase
entirely or finished the main phase very quickly (usually with very low precision
results). Overall, we came first place in all remote locations we played at and
thereby won the challenge.

In the 1vs1 Challenge, we also used the automatic calibration to prepare
for the games. During the games, in contrast to most teams, our robots not
only kicked the balls into the opponent half, which was enough to score a point
according to the rules. Instead, they actually kicked into the goal, thereby getting
the ball back and limiting the opponent’s access to balls. Up to the semifinal,
this resulted in a point ratio of 57:20 in four games. However, in the final, which



was held in the Hamburg arena, our robot always missed the goal, because its
support foot had a different grip than usual during a kick, resulting in a slightly
different kick direction. The robot then changed its strategy and just kicked the
ball into the opponent half, but that way, it could not compensate for the points
that were already lost in the beginning of the game. In the end, the robot of
the team HTWK Robots scored one point more than ours, i. e. we lost the final
with 12:13 points. Detailed results of all four challenges can found at the SPL
website [6].

7 Conclusion

In this paper, we described our research that significantly contributed to our
success in the 2021 competitions: autonomous camera calibration as well as a
set of robust vision approaches. Although future RoboCup events might be held
on site and thus allow more manual tuning again, the new capabilities that allow
playing soccer out of the box probably have a high impact. It is now possible to
play more friendly games against other teams without the need to travel long
distances and without any major loss in performance. Furthermore, the required
setup time at a RoboCup event is reduced significantly. However, there are still
calibrations left that require automation, such as for precisely kicking over long
distances. All algorithms presented in this paper are available as open source
and are part of our most recent code release [12], giving other teams similar
capabilities.
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